
Chapter 17

Galilean Transformations

Something needs to be understood a bit better. Go back to the (dimensionless)
q, p variables, which satisfy

1

i
[q, p] = 1. (17.1)

The finite version of the infinestimal translation of q considered above is [see
Problem 1 of Homework Assignment 2]

e−iq′pqeiq′p = q − q′, (17.2a)

e−iq′ppeiq′p = p, (17.2b)

or with q → p, p → −q,

eip′qpe−ip′q = p − p′, (17.3a)

eip′qqe−ip′q = q, (17.3b)

Suppose we do both these transformations in succession,

U1 = eiq′pe−ip′q, (17.4a)

U2 = e−ip′qeiq′p, (17.4b)

which describes the same successive transformations in two different orders.
Now

U−1
1 qU1 = eip′qe−iq′pqeiq′pe−ip′q = eip′q(q − q′)e−ip′q = q − q′, (17.5a)

U−1
1 pU1 = eip′qe−iq′ppeiq′pe−ip′q = eip′qpe−ip′q = p − p′, (17.5b)

so we see that U1 displaces both q and p. So does U2:

U−1
2 qU2 = e−iq′peip′qqe−ip′qeiq′p = e−iq′pqeiq′p = q − q′, (17.6a)

U−1
2 pU2 = e−iq′peip′qpe−ip′qeiq′p = e−iq′p(p − p′)eiq′p = p − p′. (17.6b)
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The effects of U1, U2 are identical. Does that mean that U1 = U2? No! This is
because q and p do not commute:

U2U
−1
1 = e−ip′qeiq′peip′qe−iq′p = e−ip′qeip′(q+q′) = eip′q′

. (17.7)

That is,
U2 = eip′q′

U1, (17.8)

the two transformations differ by a phase. That is why U2 and U1 generate the
same displacements.

Note that, in general, U and eiαU are equivalent unitary operators. Thus if

U †U = 1 →
(

eiαU
)† (

eiαU
)

= e−iαU †eiαU = 1. (17.9)

We could observe that eiα is a unitary transformation in its own right. Further,

X̄ = U−1XU → e−iαU−1XUeiα = X̄. (17.10)

As far as the response on vectors,

〈 | = 〈 |U → 〈 | = (〈 |U) eiα, (17.11)

where we see the phase ambiguity of state vectors. Left and right vectors are
incomplete objects, complete ones are the measurement symbols and numbers,
corresponding to outer and inner products respectively,

|a′〉〈a′′|, 〈a′|a′′〉. (17.12)

If |a′〉 → e−iα|a′〉 for all vectors, that is α is the same for all vectors, then

|a′〉〈a′′| → e−iα|a′〉〈a′|eiα = |a′〉〈a′′|, (17.13a)

or
〈a′|a′′〉 → eiα〈a′|a′′〉e−iα = 〈a′|a′′〉. (17.13b)

The phase ambiguity disappears in these symbols describing a complete pro-
cess. Thus, we conclude that nothing physical changes if we multiply a unitary
operator by an arbitrary phase.

For an infinitesimal change, we have an infinitesimal unitary transformation,

eiαU → (1 + iδα)

(

1 +
i

h̄
G

)

= 1 +
i

h̄
(G + h̄δα1). (17.14)

Where we use a generator G, we could always add an arbitrary multiple of a
unit operator.

What difference does this make? Remember we showed [Eq. (16.21)] that if
successive rotations are done in different orders we get different results, differing
by a rotation about a perpendicular axis:

δ[12]ω = δ1ω × δ2ω. (17.15)
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Here, look at this again by considering the following sequence of rotations:
rotation 1, followed by rotation 2, followed by the inverse of rotation 1, followed
by the inverse of rotation 2. This measures the extent to which the order of
transformation matters:

r1 = r − δ1ω × r, (17.16a)

r2 = r1 − δ2ω × r1, (17.16b)

r1−1 = r2 + δ1ω × r2, (17.16c)

r2−1 = r1−1 + δ2ω × r1−1 . (17.16d)

Now put these together:

r2 = r− δ1ω × r− δ2ω × r + δ2ω × (δ1ω × r), (17.17a)

r1−1 = r− δ2ω × r + δ2ω × (δ1ω × r) − δ1ω × (δ2ω × r), (17.17b)

r2−1 = r + δ2ω × (δ1ω × r) − δ1ω × (δ2ω × r). (17.17c)

Here we have neglected (δ1ω)2 and (δ2ω)2 terms, which would have cancelled
if kept, but are not interesting. That is, we keep only linear and bilinear terms.
Now using the identity

a× (b × c) + b × (c × a) + c × (a × b) = 0, (17.18)

we find
r2−1 = r − δ[12]ω × r, δ[12]ω = δ1ω × δ2ω, (17.19)

as we saw before. Side by side with this is the sequence of unitary transforma-
tions,

U−1
2 U−1

1 U2U1 =

(

1 −
i

h̄
G2

) (

1 −
i

h̄
G1

) (

1 +
i

h̄
G2

) (

1 +
i

h̄
G1

)

→ 1+
i

h̄
G[12],

(17.20)
where again we have kept only bilinear terms. Here

G[12] =
1

ih̄
[G1, G2]. (17.21)

From this we conclude for rotations

1

ih̄
[δ1ω · J, δ2ω · J] = (δ1ω × δ2ω) · J, (17.22)

which of course is what we already know.
What about the ambiguity in the generator,

G → G + h̄δα1? (17.23)

We might expect

1

ih̄
[δ1ω ·J+ h̄δα1, δ2ω ·J+ h̄δα1] =

1

ih̄
[δ1ω ·J, δ2ω ·J] = (δ1ω× δ2ω) ·J+ c[12]1,

(17.24)
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where c[12] is some number. Now the extra terms inside the commutator do not
contribute, because they are multiples of the unit operator. What can c[12] be?
It must depend on δ1ω and δ2ω, and must be a scalar, so

c[12] = Cδ1ω · δ2ω. (17.25)

But the left-hand side of Eq. (17.24) must be antisymmetric in 1, 2. Therefore,
C = 0. So the angular momentum commutations relations are preserved.

Similarly, although we might think that

1

ih̄
[δ1ǫ ·P, δ2ǫ ·P] = b[12]1, (17.26)

the number b[12] must be both antisymmetrical in 1 and 2, and of the form

b[12] = Bδ1ǫ · δ2ǫ, (17.27)

which can only be true if B = 0. But this new possibility does occur for
transformations to a coordinate system that is moving relative to the original
one.

17.1 Galilean Relativity

Galileo realized that one could not detect uniform motion—the physics is the
same in two coordinate systems moving with constant velocity with respect to
each other. Suppose the two coordinate systems coincide at t = 0. Then, a
particle, described in the two coordinate systems at a given time, has position
vectors

r = r − δvt. (17.28)

This is a time-dependent displacement. The corresponding unitary transforma-
tion has the generator

Gδv = δv · N, (17.29)

where N is sometimes called a boost. N is a vector, so under a rotation

δδωN = δω × N =
1

ih̄
[N, δω · J]. (17.30)

For example, this says that

1

ih̄
[Nx, Jy] = Nz. (17.31)

Turn this around, to learn how J changes under a Galilean (boost) transforma-
tion:

1

ih̄
[J, δv · N] = δδvJ = δv × N, (17.32)

which should be compared to (16.6),

1

ih̄
[J, δǫ · P] = δδǫJ = δǫ × P. (17.33)
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Just as the order of translations does not matter,

r = r− δǫ, (17.34)

so the order of Galilean transformations should not matter,

r = r − δvt, (17.35)

since a boost is just a translation at a particular time. Thus, we can conclude

1

ih̄
[δ1v · N, δ2v · N] = d[12]1, (17.36)

where, once again, we conclude that d[12] = 0 because it must be both pro-
portional to δ1v · δ2v and antisymmetrical in 1, 2. So the boost generators
commute,

[Nk, Nl] = 0. (17.37)

What if we follow a boost by a translation, and vice versa. Geometrically,
the order makes no difference, but we have once again the phase ambiguity,

1

ih̄
[δǫ ·P, δv · N] = Mδǫ · δv, (17.38)

where M is some scalar number. M does not have to be zero, since there is no
symmetry here. The previous cases all involved two different examples of the
same transformation, which is not so here. In other words, the action of a boost
on the momentum is

1

ih̄
[P, δv · N] = δδvP = Mδv. (17.39)

This suggests we call M the “mass” of the system. Of course, if you change
the state of motion by going to a relatively moving coordinate system, the
momentum changes.

Another way of writing this is

1

ih̄
[Pk, Nl] = Mδkl. (17.40)

Now how does R change? Recall under a translation,

δδǫR = δǫ =
1

ih̄
[R, δǫ ·P], (17.41)

so with δǫ = δvt this suggests

δδvR = δvt =
1

ih̄
[R, δv ·N]. (17.42)

So, to some extent, N acts like Pt, that is, a boost is a translation growing in
time. On the other hand, we also must have Eq. (17.40), which from

1

ih̄
[Pk, Rl] = −δkl, (17.43)
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would occur if N contained the term −MR. So this suggests the following
construction of the boost generator:

N = Pt − MR. (17.44)

We see here a hint of the mixing of space and time, characteristic of relativity.
Let’s check that this works: First, we must have Eq. (17.37), or

0 = [Nk, Nl] = [Pkt − MRk, Plt − MRl] = −Mtδkl + Mtδkl = 0. (17.45)

Let’s also see if Eq. (17.32), or

δδvJ = δv × N (17.46)

is true when we use the construction

J = R × P + S. (17.47)

So

δδvJ = δvt × P + R × Mδv + δδvS = δv × (Pt − MR) + δδvS (17.48)

indeed equals the required δv × N provided

0 = δδvS =
1

ih̄
[S, δv · (Pt − MR)] = 0, (17.49)

which is true, because S commutes with both P and R,

[Sk, Pl] = 0, [Sk, Rl] = 0. (17.50)

Now that we have introduced time, let’s recognize that we also have the
freedom to translate the origin of time, or make a time displacement:

t̄ = t − δt, (17.51)

where δt is a constant. Quantum mechanically, this must be represented by a
unitary transformation, or by a generator,

Gδt = −δtH, (17.52)

where H is the Hamiltonian or the energy operator. The minus sign appears
here because otherwise physical energies would turn out to be negative. [Another
hint of (Einsteinian) relativity.]

Now time and spatial translations are unrelated, so we would expect

1

ih̄
[δǫ ·P,−δtH ] = 0. (17.53)

A possible multiple of the unit operator on the right-hand side of this equation
is precluded, since it would have to be a scalar constructed bilinearly from δǫ

and δt, and there is none such. Thus

[Pk, H ] = 0, (17.54)
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which says that H does not change under a displacement of the coordinate
system,

δδǫH = 0. (17.55)

Likewise, time displacements and spatial rotations are independent,

1

ih̄
[δω · J,−δtH ] = 0, (17.56)

or
[Jk, H ] = 0, (17.57)

which is to say H is a scalar,
δδωH = 0. (17.58)

But Galilean transformations, boosts, involve both time and space. Under
a time translation,

t̄ = t − δt, r̄ = r, (17.59)

while under a boost,
t̄ = t, r̄ = r − δvt. (17.60)

Consider the following sequence of these transformations, 1, 2, 1−1, 2−1:

1 : t1 = t − δt, r1 = r; (17.61a)

2 : t2 = t1 = t − δt, r2 = r1 − δvt1 = r − δv(t − δt); (17.61b)

1−1 : t1−1 = t2 + δt = t − δt + δt = t,

r1−1 = r2 = r − δv(t − δt); (17.61c)

2−1 : t2−1 = t1−1 = t, r2−1 = r1−1 + δvt1−1 = r + δvδt. (17.61d)

So we see a net spatial displacement of −δvδt, or, in terms of the generators
[see Eq. (17.21)],

1

ih̄
[−δtH, δv ·N] = −δtδv · P, (17.62)

or
1

ih̄
[H, δv ·N] = δv ·P. (17.63)

A Galilean transformation changes the state of motion, and thus changes the
energy.

We summarize the statements we have learned about how the energy oper-
ator changes under Galilean relativity:

1

ih̄
[P, H ] = 0, (17.64a)

1

ih̄
[J, H ] = 0, (17.64b)

1

ih̄
[N, H ] + P = 0. (17.64c)

In the next chapter, we will review the dynamics resulting from the Hamiltonian.


