
Chapter 16

Translations

The time has come to go back and talk about displacement. Recall the rigid
displacement of the origin of the coordinate system pictured in Fig. 16.1. The
origin is displaced by an infinitesimal amount δǫ, so the new coordinates of a
point are related to the old coordinates of the same point by

r̄ = r− δǫ. (16.1)

Correspondingly, there is an infinitesimal unitary transformation

U = 1 +
i

h̄
G, G = δǫ · P, (16.2)

where the vector P is the momentum operator. Since P is a vector, it must
satify the following communtation relation with the angular momentum,

1

ih̄
[P, δω · J] = δω × P, (16.3)
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Figure 16.1: A point in space as described in two different coordinate systems,
O and Ō, where the latter’s origin is displaced from the former’s by an amount
δǫ.
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since this is how any vector transforms under a rotation. Turn this around to
see the effect of P on J:

1

ih̄
[δǫ ·P, δω · J] = δǫ · (δω × P). (16.4)

The question we are asking is, what is the effect of a displacement on J? Because

δǫ · (δω × P) = (δǫ × δω) ·P = −(δω × δǫ) ·P = −δω · (δǫ × P), (16.5)

or
1

ih̄
[J, δǫ ·P] = δǫ × P, (16.6)

in which we see appear the moment of momentum–when the origin in moved,
the moment changes. This suggests introducing a position operator R, and
writing

J = R × P + S, (16.7)

where the first term is the orbital angular momentum and the second is the
spin. Since under a displacement,

1

ih̄
[R, δǫ · P] = δǫ, (16.8)

because this is just how the position vector changes under a displacement, while

1

ih̄
[P, δǫ ·P] = 0, (16.9)

because momentum shouldn’t change under a displacement, and finally,

1

ih̄
[S, δǫ · P] = 0, (16.10)

because spin has nothing to do with position, we see that Eq. (16.6) is au-
tomatically satisfied. Moreover, the orbital angular momentum satisfies the
commutation relations of angular momentum: That is, if

L = R × P, (16.11)

then
1

ih̄
[L, δω · L] = δω × L. (16.12)

[Proof: Homework.] The spin in general must be present because orbital angular
momentum can only take integral values of l,

L
2′ = l(l + 1)h̄2, L′

z = mh̄, −l ≤ ml ≤ l, (16.13)

whereas angular momentum can take on half-integral as well as integral values.
Thus we have derived

1

ih̄
[Rk, Pl] = δkl, (16.14)
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Figure 16.2: Parallelogram formed by considering two successive translations,
first by an amount δ1ǫ followed by δ2ǫ, or in the other order, δ2ǫ followed by
δ1ǫ. The net result is the same.

which generalizes the Heisenberg commutation relations we studied above,

1

ih̄
[q, p] = 1, (16.15)

to three independent sets of q, p variables.
Now why is it that the momentum operators commute as shown in Eq. (16.9)?

The physical or geometrical reason is that translations commute with each other,
as shown in Fig. 16.2. The figure shows that the order of doing translations does
not matter. In contrast, rotations are non-commutative: a rotation about the
x axis followed by one about the y axis is not the same as a rotation about the
y axis followed by a rotation about the x axis. The two rotations differ by a
rotation about the z axis, which is the content of the commutation relation

JxJy − JyJx = ih̄Jz. (16.16)

Let’s check this analytically. If we do the translations in the first order,

r̄1 = r − δ1ǫ, r̄2 = r1 − δ2ǫ = r − (δ1ǫ + δ2ǫ), (16.17a)

while if we do them in the opposite order,

r̄2 = r− δ2ǫ, r̄1 = r2 − δ1ǫ = r − (δ2ǫ + δ1ǫ), (16.17b)

so these are the same. The order of translations makes no difference, or

[δ1ǫ ·P, δ2ǫ · P] = 0, (16.18)

or in components,
[Pk, Pl] = 0. (16.19)

This says that all components of momentum are compatible; unlike Jx, Jy, and
Jz, we can specify values for Px, Py, Pz simultaneously.

Contrast the above calculation with that for successive rotations:

r̄1 = r − δ1ω × r, (16.20a)

r̄21 = r1 − δ2ω × r1 = r− (δ1ω + δ2ω) × r + δ2ω × (δ1ω × r),(16.20b)
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while if we do them in the opposite order,

r̄2 = r − δ2ω × r, (16.20c)

r̄12 = r2 − δ1ω × r2 = r − (δ2ω + δ1ω) × r + δ1ω × (δ2ω × r).(16.20d)

Here we have kept linear and bilinear terms in the rotations. These two rotations
are not the same:

δ[12]r = r12−r21 = δ1ω×(δ2ω×r)−δ2ω×(δ1ω×r) = (δ1ω×δ2ω)×r, (16.21)

which is a rotation about the direction perpendicular to both δ1ω and δ2ω.
The commutation relation (16.14) says that perpendicular components of R

and P commute with each other,

1

ih̄
[Rk, Pl] = 0, k 6= l, (16.22)

whereas parallel components fail to commute,

1

ih̄
[Rk, Pk] = 1, (16.23)

because the kth component of position changes by δǫk if the coordinate system
is displaced in the k direction by that amount. This says that perpendicular
components of R,P are compatible, while parallel comments of R,P are incom-
patible. So that means that we cannot measure Rx, Px simultaneously, as we
saw at the very beginning of the course.

As noted above, the spin is unaffected by translation,

δSk = 0 =
1

ih̄
[Sk, δǫ · P], (16.24)

that is, S,P are compatible,
[Sk, Pk] = 0. (16.25)

Now the new vector R must transform appropriately under a rotation,

δδωR = δω × R =
1

ih̄
[R, δω · J]

=
1

ih̄
[R, δω · (R × P) + δω · S]

=
1

ih̄
[R, (δω × R) ·P + δω · S]. (16.26)

The first commutator here looks like Eq. (16.8), by regarding δω×R = δǫ, and
if this commutes with R, we conclude from Eq. (16.8) that this commutation
relation is satisfied if

[Rk, Sl] = 0, (16.27)

which as we would expect, since S has nothing to do with either position or
momentum. But in fact δω × R is an operator, so this only works if δω × R

commutes with R, or
[Rk, Rl] = 0. (16.28)
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Put this all together:

[Rk, Rl] = 0, (16.29a)

[Pk, Pl] = 0, (16.29b)

1

ih̄
[Rk, Pl] = δkl, (16.29c)

and the spin is independent of the position and momentum,

[Rk, Sl] = [Pk, Sl] = 0. (16.30)

As for S it must rotate as a vector, so

δδωS = δω × S =
1

ih̄
[S, δω · S], (16.31)

so, for example,
ih̄Sz = SxSy − SySx, (16.32)

or generally,
S × S = ih̄S. (16.33)


