
Chapter 15

More on harmonic oscillator

and angular momentum

The abstract statement

|n〉 =
(y†)n

√
n!

|0〉 (15.1)

contains more information than the construction of the excited-state wavefunc-
tions ψn(q′) in terms of the ground-state wavefunction. We now want to obtain
the momentum-space wavefunctions, ψn(p′). (We could obtain that informa-
tion, with more work, from the position-space wavefunction.) Recall

dq′|ψn(q′)|2 (15.2)

is the probability of finding q′ in the dq′ interval; therefore,

dp′|ψn(p′)|2 (15.3)

is the probability of finding p′ in the interval between p′ and p′ + dp′. We
construct this momentum wavefunction directly from Eq. (15.1), or

ψn(p′) = 〈p′|n〉 = 〈p′| (q − ip)n

√
2nn!

|0〉. (15.4)

Now recall for p states

〈p′|p = p′〈p′|, 〈p′|q = i
∂

∂p′
〈p′|, (15.5)

which differs from

〈q′|q = q′〈q′|, 〈q′|p =
1

i

∂

∂q′
〈q′| (15.6)

by the substitution
q → p, p→ −q. (15.7)
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Thus, following the previous path,

〈p′|n〉 =
in√
2nn!

(

∂

∂p′
− p′

)n

〈p′|0〉, (15.8)

The ground-state wavefunction is analogous to that in position-space:

ψo(p
′) =

1

π1/4
e−

1

2
p′2

. (15.9)

The latter follows by Fourier transformation (See Problem 2, Assignment 2),

ψ0(p
′) = 〈p′|0〉 =

∫ ∞

−∞

〈p′|q′〉dq′〈q′|0〉 =

∫ ∞

−∞

dq′
e−iq′p′

√
2π

ψ0(q
′)

=
1

π1/4

1√
2π

∫ ∞

−∞

dq′e−
1

2
q′2−iq′p′

=
1

π1/4

1√
2π

∫ ∞

−∞

dq′e−
1

2
(q′+ip′)2e−

1

2
p′2

=
1

π1/4
e−

1

2
p′2

, (15.10)

where we have noted that [Eq. (14.36)]

∫ ∞

−∞

dq′e−
1

2
(q′+ip′)2 =

√
2π, (15.11)

since the integral is invariant under a shift of variable, q′ → q′ − ip′.
Alternatively, we can obtain the ground-state wavefunction directly, from

the annihilation operator statement,

y|0〉 = 0. (15.12)

This implies
(

i
∂

∂p′
+ ip′

)

〈p′|0〉 = 0, (15.13)

which has as solution
〈p′|0〉 = Ce−

1

2
p′2

. (15.14)

We can choose the normalization factor to be C = π−1/4 in order to satisfy the
probability normalization condition

∫ ∞

−∞

dp′|ψ0(p
′)|2 = 1. (15.15)

Now, by using the identity (14.52), with q′ → p′, we write Eq. (15.8) as

〈p′|n〉 =
in

√

2nn!
√
π
e

1

2
p′2

(

d

dp′

)n

e−p′2

, (15.16)
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or in terms of Hermite polynomials in momentum [Eq. (14.55) with q′ → p′],

ψn(p′) =
(−i)n

√
π1/22nn!

Hn(p′)e−
1

2
p′2

. (15.17)

We could also obtain this result directly from the position-space wavefunction
by Fourier transformation.

All of this came from considering the case when “the angular momentum was
nearly aligned with the z axis,” or m ≈ j. What about the opposite situation,
when m ≈ −j? Once again, let us suppose

j ≫ 1, (15.18)

but now let

m = −j + n, n = 0, 1, 2, . . . , or n = m+ j. (15.19)

Now when m increases, so does n. Recall the raising operator statement

1

h̄
J+|jm〉 =

√

(j −m)(j +m+ 1)|jm+ 1〉 =
√

(2j − n)(n+ 1)|jm+ 1〉,
(15.20)

or with j ≫ n
1

h̄
J+|n〉 ≈

√

2j
√
n+ 1|n+ 1〉. (15.21)

This time define
1

h̄
J+ =

√

2jy†, (15.22)

so we obtain the following statement which makes no reference to j:

y†|n〉 =
√
n+ 1|n+ 1〉. (15.23)

Likewise, from

1

h̄
J−|jm〉 =

√

(j +m)(j −m+ 1)|jm− 1〉 ≈
√

n(2j)|jm− 1〉, (15.24)

we define
1

h̄
J− =

√

2jy, (15.25)

as the adjoint of Eq. (15.22), where

y|n〉 =
√
n|n− 1〉. (15.26)

Everything is the same as before, in terms of the oscillator variables, but the
construction is different. Previously [Eq. (14.6)]

m = j − n, n≪ j :
1

h̄
J+ =

√

2jy, J− =
√

2jy†. (15.27)
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Both situations give rise to y and y† with the same properties, which follow
from

[

1

h̄
J+,

1

h̄
J−

]

= 2
1

h̄
Jz. (15.28)

In the first situation,

j ≫ 1, m ≈ j : [y, y†] = 1, since
Jz

h̄
≈ j, (15.29a)

while in the second

j ≫ 1, m ≈ −j : [y†, y] = −1, since
Jz

h̄
≈ −j, (15.29b)

or
[y, y†] = 1, (15.29c)

which is exactly the same statement. Of course, the commutation relation
follows from the effect of y, y† on any state,

(yy† − y†y)|n〉 = y
√
n+ 1|n+ 1〉 − y†

√
n|n− 1〉 =

√
n+ 1

√
n+ 1|n〉 −

√
n
√
n|n〉

= (n+ 1 − n)|n〉 = |n〉. (15.30)

Because this holds for any n state, and these states form a complete set,

∞
∑

n=0

|n〉〈n| = 1, (15.31)

we must have
[y, y†] = (yy† − y†y) = 1. (15.32)

Thus we have constructed two different ways of arriving at the oscillator,
which can be transcribed in terms of Hermitian variables as

y =
q + ip√

2
, y† =

q − ip√
2
, (15.33)

so because

y†y =
q2 + p2

2
− 1

2
, (15.34)

the eigenvalue condition
(y†y)′ = n (15.35)

implies the energy eigenvalues
(

q2 + p2

2

)′

= n+
1

2
. (15.36)

Even though these two oscillator systems describe two extreme limits of
angular momentum, together they describe angular momentum in general. Let
us define two non-negative integers n± by

j −m = n−, n− = 0, 1, 2, . . . , (15.37a)

j +m = n+, n+ = 0, 1, 2, . . . , (15.37b)
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so

j =
1

2
(n+ + n−), m =

1

2
(n+ − n−). (15.38)

We can use n± in place of j and m. Now relabel everything:

1

h̄
J+|jm〉 =

√

(j −m)(j +m+ 1)|jm+ 1〉 (15.39)

becomes
1

h̄
J+|n+, n−〉 =

√
n−

√

n+ + 1|n+ + 1, n− − 1〉, (15.40)

and
1

h̄
J−|jm〉 =

√

(j +m)(j −m+ 1)|jm− 1〉 (15.41)

becomes
1

h̄
J−|n+, n−〉 =

√
n+

√

n− + 1|n+ − 1, n− + 1〉. (15.42)

Recall

y†|n〉 =
√
n+ 1|n+ 1〉, y|n〉 =

√
n|n− 1〉, (15.43)

for the oscillator. Here we see these effects twice over. There are two independent

types of operators,

√
n−

√

n+ + 1|n+ + 1, n− − 1〉 = y
†
+y−|n+, n−〉. (15.44)

Here y†+ acts only on the n+ variable, while y− acts only on the n− variable. In
the oscillator limits, we saw only one of these operators. Similarly, we have

√
n+

√

n− + 1|n+ − 1, n− + 1〉 = y
†
−y+|n+, n−〉. (15.45)

To complete the story, look at

1

h̄
Jz|jm〉 = m|jm〉 =

1

2
(n+ − n−)|n+, n−〉. (15.46)

Therefore we want to identify

y
†
+y+|n+, n−〉 = n+|n+, n−), y

†
−y−|n+, n−〉 = n−|n+, n−); (15.47)

in this way, Jx, Jy, and Jz can be expressed in terms of y+, y†+, y−, y†−:

1

h̄
J+ = y

†
+y−, (15.48a)

1

h̄
J− = y

†
−y+, (15.48b)

1

h̄
Jz =

1

2
(y†+y+ − y

†
−y−). (15.48c)
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We need to hammer home the fact that the +, −, operators are independent:

[y+, y
†
+] = 1 (15.49a)

[y−, y
†
−] = 1 (15.49b)

[y−, y+] = [y+, y
†
−] = 0. (15.49c)

We see the last because

y+y
†
−|n+, n−〉 = y+

√

n− + 1|n+, n− + 1〉 =
√
n+

√

n− + 1|n+ − 1, n− + 1〉,
(15.50)

while

y
†
−y+|n+, n−〉 = y

†
−

√
n+|n+ − 1, n−〉 =

√
n+

√

n− + 1|n+ − 1, n− + 1〉, (15.51)

so
(y+y

†
− − y

†
−y+)|n+, n−〉 = 0. (15.52)

Since any vector can be expressed in terms of the |n+, n−〉 states—they form a
complete set—the result (15.49c) follows.

We now want to organize the results in one structure, since Jx, Jy, and Jz

are components of the angular momentum vector. Construct a two component
vector,

y =

(

y+
y−

)

, y† = (y†+, y
†
−). (15.53)

We can write the combinations of these operators in terms of 2 × 2 matrices.
For example,

y
†
+y− =

(

y+
y−

)† (

0 1
0 0

) (

y+
y−

)

= (y†+, y
†
−)

(

y−
0

)

. (15.54)

Similarly,

y
†
−y+ =

(

y+
y−

)† (

0 0
1 0

) (

y+
y−

)

= (y†+, y
†
−)

(

0
y+

)

, (15.55)

and

1

2
(y†+y+ − y

†
−y−) =

(

y+
y−

)† (

1
2 0
0 − 1

2

) (

y+
y−

)

= (y†+, y
†
−)

1

2

(

y+
−y−

)

. (15.56)

Now we recognize these matrices in terms of Pauli matrices:
(

1
2 0
0 − 1

2

)

=
1

2
σz,

(

0 1
0 0

)

=
1

2
(σx + iσy),

(

0 0
1 0

)

=
1

2
(σx − iσy). (15.57)

Thus, we have the constructions, in terms of the vectors (15.53)

1

h̄
J+ =

1

h̄
(Jx + iJy) = y†

1

2
(σx + iσy)y, (15.58a)

1

h̄
J− =

1

h̄
(Jx − iJy) = y†

1

2
(σx − iσy)y, (15.58b)

1

h̄
Jz = y†

1

2
σzy, (15.58c)
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or as a single vector statement

1

h̄
J = y†

1

2
σy. (15.59)

The properties of J follow from those of y and y†. This says that any angular
momentum can be built from the addition of spin-1/2 angular momenta. This
provides a machinery for combining similar systems. It is an example of a
technique called “second quantization,” which is used to describe many electrons
or photons, for example.


