Chapter 14

Harmonic oscillator
variables

We now build upon the machinery of the previous chapter, and consider the
limit j > 1. The magnetic quantum number differs by an integer from this

m=j—n, (14.1)

where we will consider the integer n as finite, so that it is also true that m > 1.
Pictorially, this suggests that J points almost along the z axis. That is, we
suppose n < j. Now the effect of the raising operator can be written in the
form

1
ﬁﬁﬂm%:JU— m)(j +m+1)jm+1) = /n2j +1—n)|jm+1), (14.2)

and because j is large compared to n, we approximate this by

1 . - .
ﬁJ+|jm> ~\/2jv/nlim + 1). (14.3)
Similarly, because

VE+m)G-—m+1)=/2j—n)n+1)~/2jvVn+1, (14.4)

we have for the lowering operator

1
ﬁJ,|jm>%\/2j\/n+1|jm—1>. (14.5)

Now in the first case we recognize that increasing m by 1 decreases n by 1, and
in the second case, decreasing m by 1 increases n by 1. Now redefine

1 - 1 -
=Jv =25y, I =2y, (14.6)
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so that Egs. (14.3) and (14.5) become for very large j

yln) = van—-1), yin)=vn+1jn+1). (14.7)
Further, because
1J 1J *21‘] (14.8)
5 + BT - A 2 .
we learn that
2jly, y'l =~ 24, (14.9)

since the eigenvalue of J, is

1
ﬁJ;:m:j—nzj (14.10)

for all the states we are considering. Thus in this large j limit
[y, y'] = 1. (14.11)
Look at the equation for J2, Eq. (13.64):
J2=J_Jy +J2+ R, (14.12)
which for these states becomes, after removing the factor of h?,
GG+ =2yly+ (G —n)’+j-—n=2y'y+iG+1)—2jn,  (14.13)

where in the last we dropped the terms independent of j. So we conclude that
the eigenvalue of yly is n:
yTyln) = nln), (14.14)

so |n) is the eigenvector of 3Ty with eigenvalue n. We can see this directly:
y'yln) = y'Vnln — 1) = Vny'|n — 1) = Vnv/n[n) = njn). (14.15)

This connects to something we already know. Remember how the non-
Hermitian operators are constructed:

1 1
1 1
= = V2t = = (Ja = idy). (14.16b)

Let us define Hermitian variables ¢ and p by

1 - 1 -
ﬁJm = \/5(], ﬁJu = \/5]97 (1417)

SO . .
qt+ip i g—ip

y:\/ijy N

(14.18)
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The commutation relation

v,y =1 (14.19)
implies

g, p] = i. (14.20)
We recognize from this that ¢ and p have continuous spectra. We saw the

equivalent result at the end of last term, see Chapter 11.
Now the eigenvalue equation

yly|n) = nln), (14.21)
implies, because
; : 2. .2 2, .2
fo_4—watip ¢ +p° i . ¢ +pT 1 14.99
NG 5+ 5la1] ) 5 (14.22)
that the eigenvalue of (¢ + p?)/2 is
2 2\’
1
(q ;Lp ) =n+3, (14.23)

We can now construct the eigenstates, and the wavefunctions. Particularly
easy is the n = 0 state, for which

q+ip
0) =0, 0) =0. 14.24
oy =0, L22) (14:24)
Multiply this on the left by an eigenstate of ¢, having eigenvalue ¢’:
/ - / a /!
0={(dla+wl0) = {d'+ 75 | (d]0)- (14.25)
Here we used Eq. (11.93),
10
"lp=~==—(¢ 14.26
(d'lp i@q’<q|’ (14.26)

which is consistent with the commutation relation
. 10 )
[qvp] =t [q’, ;a—q,} = 1. (14-27)

We can immediately solve the differential equation (14.25) for the wavefunction

for the lowest state,
1 _1r
(10) = wo(q) = e 27" (14.28)

Here the normalization factor has been inserted, so that

<0|0>=/OO <0|q'>dq’<q'|0>=/oo dq'vo(q') ¢o(d') = 1, (14.29)

— 00 — 00
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according to Eq. (11.107). That is,

1 & 2
— dg e”? =1. 14.30
NG /_Oo e (14:30)

See also Eq. (11.111). Equation (14.28) gives the ground-state wavefunction of
the harmonic oscillator. We recall that dq’[w(q’)|? is the probability of finding
¢’ in the interval between ¢’ and ¢’ +dq’. So this normalization condition states
that the total probability is unity. All other states of the harmonic oscillator
can be constructed in terms of this ground-state wavefunction.

What is the wavefunction for the next highest state? Recalling Eq. (14.7),
we have

q—ip
1) =y'l0) = WW- (14.31)
Take the ¢’ component of this,

(1) = <q’|%|o> - % (q' - %) 0. (14.32)

We already know (¢’|0) from Eq. (14.28). We can simply do the derivative, or
simply remember

9] a2 /9
(q’+ 8—q,> e /2 =0, (14.33)
Then we have the wavefunction for the first excited state,

1,72

Dnla) = (o 1) = e " (1434)

Now the normalization has emerged automatically. Let us check this: Is

/ dq'|¢1(¢")|* = %/_ dq'(¢)?e 1" =17 (14.35)

/ dgle 1" = \/§ (14.36)

and by differentiating with respect to A and then setting A = 1 we obtain

/ dg'q%e= 1" = ? (14.37)

Indeed, we know

— 00

which establishes Eq. (14.35).
As a second check of this we can use the lowering operator,

q+ip.
7 |1) = 10),

(14.38)
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which is equivalent to the differential equation

1 0
7 (ql + (?_q’> P1(q") = old). (14.39)
Indeed it is true that
1 8 _ 1.2 1 1 .72
/4 <q/+ 8_q’> qemt = e (14.40)

which uses Eq. (14.33).

Now we want to construct the general wavefunction, starting from

y'n) = vVn+1|n+ 1), (14.41)
y'ln —1) = v/nln), (14.42)

which gives the nth state in terms of the n — 1st state, which in turn can be
expressed in terms of the n — 2nd state, etc. Thus

1 1

1
=— fyfln —2) = ... = —=(y""|0). 14.43
W= =y =2 == ). (1443
Alternatively, since _
yt = q\_/gp, (14.44)
we have 1
Now project this on the ¢’ state:
/ 1 / - \n 1 < / 9 ) / . \n—1
n)y = — 1 0) = _— — 1 0
(q'In) \/W@ (g =p)"|0) = —== {4 o7 (d'|(q —ip)"~710)
1 a\"

Since we know the ground-state wavefunction (14.28) we thus have a blueprint
for how to construct all the wavefunctions,

! (_l)n d ’ " _1g?
)= T Fomy \ g7 ~ : 14.4
To work this out, think of
d 1,./2 12 d
— e 24 N — o34 . no_ /
dq’ {e 1 fa )} e [dq,f(q) qflq )] : (14.48)

so we recognize that
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Continuing on, we see

3 e, d [ 12(d , a2 fd N,
i 0] =g [ ()| =4 (G5 o) 10

and in general,

(diql>n [e*%qu(q’)} = ¢ 30” <diq/ - q/)n f(d). (14.51)

Let f(¢') = e_ql2/2; then we have

d " ’ ’ d " /
(d_q/> 67q2 = 67%q2 (d_q/ —q/) 67%(127 (1452)
and the wavefunction has the form
" (=™ 147 d\" e
R (_dq, e1* (14.53)

Now let us make contact with some 19th century mathematics. We recall
that

d\" _, /
F) e =e 1" x polynomial of order n in ¢'. (14.54)
q

The standard definition for the Hermite polynomial H,(q’) is

d\" _. ,
(—1)" (d—q,> e = e " H, (). (14.55)
Thus our nth wavefunction is
’ 1 N L2
Vn(¢) = ———=—=Hn(q)e 27 . (14.56)

Vrl/22npl

We already know the first two H,,’s, from 1y and ¥; we find

Ho(q') =1, Hi(q")=2¢" (14.57)
And from the definition,
d 2 7(1/2 d / 7(1/2 2 *(1’2
a7 e =i (—Qq e ) = (4¢"" — 2)e™ 1, (14.58)
S0
Ho(q') = 447 — 2. (14.59)

Figure 14.1 shows how these wavefunctions look. Notice that the n = 0
wavefunction is even, and has no zeros. The n = 1 wavefunction is odd, and
vanishes once at ¢’ = 0. The n = 2 wavefunction is again even, but has zeros
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Figure 14.1: The lowest three wavefunctions of the harmonic oscillator, corre-
sponding to the energies Ey = hw/2, Fy = 3hw/2, and 5hw/2.

at ¢ = £1/v/2. In general, ¢,, has n zeroes. These wavefunctions have to be
mutually orthonormal:

ity = [ ) ) = G (14.60)

Since v is positive everywhere, it follows that i; must change sign; since -
must be orthogonal to both ¥y and %, it must have a more complicated struc-
ture.

14.1 Physical variables; Uncertainty principle

The physical harmonic oscillator is described by the Hamiltonian

S P
H = o + 5w g (14.61)

Here m is the mass and w is the frequency of the oscillator. We want to relate
this to what we did above, where

1 1
H=>p>+ 2. 14.62
5P+ 54 ( )
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Since the latter has eigenvalues n 4 1/2, which has no energy scale, the energies
should be related by

H = Hhw, (14.63)
since the energy scale of the oscillator is Aiw. Thus,
B\ /2
ﬁ—oﬁm”%,q—(—J ‘ (14.64)
mw

Thus the energies of the physical harmonic oscillator are
1
E, = (n+ 5) hw, (14.65)

and the canonical commutation relations for the physical position and momen-
tum operators are
[4,p] = ih. (14.66)

Note that this means, on an eigenstate of position,

n o
i 04

(d'lqg= (@] (14.67)

From Eq. (14.66) we can derive Heisenberg’s uncertainty principle. (This
derivation appeared on the Final Exam for Physics 3803; for convenience we
repeat it here.) Recall that in homework last term we proved the Cauchy-
Schwartz inequality, for any two vectors:

(L[2)]* < (1[1)(2]2). (14.68)

Suppose we have two Hermitian operators, ¢ and p that satisfy the Heisenberg
commutation relation

lq,p] = ih. (14.69)
Suppose | ) is some state in which the average values of ¢ and p are ¢ and p,
a={(lal), p={(lpl) (14.70)
Since these average values are numbers, it is also true that
lg—q,p—p] = ih. (14.71)
Then
ih={lg—qp—0)=(lle-—)p—0))—(lp—0)a—DI)
=(llg=q-p)—{lle—D-pI)"
— 2im{ (¢ — D)o~ )| ). (14.72)

Now use Cauchy-Schwartz (14.68) for the states

N =@-al) 2=@-0l), (14.73)
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= (llg—=’)(Itp—p)?)
> Q2P = 1(g—a)p-p))?
= Re(l(g—q)(p—p)| )*+ (Im( [(¢ — ) (p —D)| ))?

{11){2[2)

A\ 2
> (6 - 06— 7 = (3) (1474)
which proves
h

AqAp > 5 (14.75)

where the rms fluctuations in position and momentum are defined by
(Ag)* = (g =) =(la’]) = (ldl )*, (14.76a)
(Ap)?* = (-0 )= (1p*]) — (ol )* (14.76Db)



