
Chapter 14

Harmonic oscillator

variables

We now build upon the machinery of the previous chapter, and consider the
limit j ≫ 1. The magnetic quantum number differs by an integer from this

m = j − n, (14.1)

where we will consider the integer n as finite, so that it is also true that m≫ 1.
Pictorially, this suggests that J points almost along the z axis. That is, we
suppose n ≪ j. Now the effect of the raising operator can be written in the
form

1

h̄
J+|jm〉 =

√

(j −m)(j +m+ 1)|jm+ 1〉 =
√

n(2j + 1 − n)|jm+ 1〉, (14.2)

and because j is large compared to n, we approximate this by

1

h̄
J+|jm〉 ≈

√

2j
√
n|jm+ 1〉. (14.3)

Similarly, because

√

(j +m)(j −m+ 1) =
√

(2j − n)(n+ 1) ≈
√

2j
√
n+ 1, (14.4)

we have for the lowering operator

1

h̄
J−|jm〉 ≈

√

2j
√
n+ 1|jm− 1〉. (14.5)

Now in the first case we recognize that increasing m by 1 decreases n by 1, and
in the second case, decreasing m by 1 increases n by 1. Now redefine

1

h̄
J+ =

√

2jy,
1

h̄
J− =

√

2jy†, (14.6)
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so that Eqs. (14.3) and (14.5) become for very large j

y|n〉 =
√
n|n− 1〉, y†|n〉 =

√
n+ 1|n+ 1〉. (14.7)

Further, because
[

1

h̄
J+,

1

h̄
J−

]

= 2
1

h̄
Jz, (14.8)

we learn that
2j[y, y†] ≈ 2j, (14.9)

since the eigenvalue of Jz is

1

h̄
J ′

z = m = j − n ≈ j (14.10)

for all the states we are considering. Thus in this large j limit

[y, y†] = 1. (14.11)

Look at the equation for J
2, Eq. (13.64):

J
2 = J−J+ + J2

z + h̄Jz, (14.12)

which for these states becomes, after removing the factor of h̄2,

j(j + 1) = 2jy†y + (j − n)2 + j − n ≈ 2jy†y + j(j + 1) − 2jn, (14.13)

where in the last we dropped the terms independent of j. So we conclude that
the eigenvalue of y†y is n:

y†y|n〉 = n|n〉, (14.14)

so |n〉 is the eigenvector of y†y with eigenvalue n. We can see this directly:

y†y|n〉 = y†
√
n|n− 1〉 =

√
ny†|n− 1〉 =

√
n
√
n|n〉 = n|n〉. (14.15)

This connects to something we already know. Remember how the non-
Hermitian operators are constructed:

1

h̄
J+ =

√

2jy =
1

h̄
(Jx + iJy), (14.16a)

1

h̄
J− =

√

2jy† =
1

h̄
(Jx − iJy). (14.16b)

Let us define Hermitian variables q and p by

1

h̄
Jx =

√

jq,
1

h̄
Jy =

√

jp, (14.17)

so

y =
q + ip√

2
, y† =

q − ip√
2
. (14.18)
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The commutation relation
[y, y†] = 1 (14.19)

implies
[q, p] = i. (14.20)

We recognize from this that q and p have continuous spectra. We saw the
equivalent result at the end of last term, see Chapter 11.

Now the eigenvalue equation

y†y|n〉 = n|n〉, (14.21)

implies, because

y†y =
q − ip√

2

q + ip√
2

=
q2 + p2

2
+
i

2
[q, p] =

q2 + p2

2
− 1

2
, (14.22)

that the eigenvalue of (q2 + p2)/2 is

(

q2 + p2

2

)′

= n+
1

2
, (14.23)

We can now construct the eigenstates, and the wavefunctions. Particularly
easy is the n = 0 state, for which

y|0〉 = 0,
q + ip√

2
|0〉 = 0. (14.24)

Multiply this on the left by an eigenstate of q, having eigenvalue q′:

0 = 〈q′|q + ip|0〉 =

(

q′ +
∂

∂q′

)

〈q′|0〉. (14.25)

Here we used Eq. (11.93),

〈q′|p =
1

i

∂

∂q′
〈q′|, (14.26)

which is consistent with the commutation relation

[q, p] = i→
[

q′,
1

i

∂

∂q′

]

= i. (14.27)

We can immediately solve the differential equation (14.25) for the wavefunction
for the lowest state,

〈q′|0〉 = ψ0(q
′) =

1

π1/4
e−

1

2
q′2

. (14.28)

Here the normalization factor has been inserted, so that

〈0|0〉 =

∫ ∞

−∞

〈0|q′〉dq′〈q′|0〉 =

∫ ∞

−∞

dq′ψ0(q
′)∗ψ0(q

′) = 1, (14.29)
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according to Eq. (11.107). That is,

1√
π

∫ ∞

−∞

dq′ e−q′2

= 1. (14.30)

See also Eq. (11.111). Equation (14.28) gives the ground-state wavefunction of
the harmonic oscillator. We recall that dq′|ψ0(q

′)|2 is the probability of finding
q′ in the interval between q′ and q′ +dq′. So this normalization condition states
that the total probability is unity. All other states of the harmonic oscillator
can be constructed in terms of this ground-state wavefunction.

What is the wavefunction for the next highest state? Recalling Eq. (14.7),
we have

|1〉 = y†|0〉 =
q − ip√

2
|0〉. (14.31)

Take the q′ component of this,

〈q′|1〉 = 〈q′|q − ip√
2

|0〉 =
1√
2

(

q′ − ∂

∂q′

)

〈q′|0〉. (14.32)

We already know 〈q′|0〉 from Eq. (14.28). We can simply do the derivative, or
simply remember

(

q′ +
∂

∂q′

)

e−q′2/2 = 0. (14.33)

Then we have the wavefunction for the first excited state,

ψ1(q
′) = 〈q′|1〉 =

√
2

π1/4
q′e−

1

2
q′2

. (14.34)

Now the normalization has emerged automatically. Let us check this: Is

∫ ∞

−∞

dq′|ψ1(q
′)|2 =

2√
π

∫ ∞

−∞

dq′(q′)2e−q′2

= 1? (14.35)

Indeed, we know
∫ ∞

−∞

dq′e−λq′2

=

√

π

λ
, (14.36)

and by differentiating with respect to λ and then setting λ = 1 we obtain

∫ ∞

−∞

dq′q′2e−q′2

=

√
π

2
, (14.37)

which establishes Eq. (14.35).
As a second check of this we can use the lowering operator,

q + ip√
2

|1〉 = |0〉, (14.38)
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which is equivalent to the differential equation

1√
2

(

q′ +
∂

∂q′

)

ψ1(q
′) = ψ0(q

′). (14.39)

Indeed it is true that

1

π1/4

(

q′ +
∂

∂q′

)

q′e−
1

2
q′2

=
1

π1/4
e−

1

2
q′2

, (14.40)

which uses Eq. (14.33).
Now we want to construct the general wavefunction, starting from

y†|n〉 =
√
n+ 1|n+ 1〉, (14.41)

or
y†|n− 1〉 =

√
n|n〉, (14.42)

which gives the nth state in terms of the n − 1st state, which in turn can be
expressed in terms of the n− 2nd state, etc. Thus

|n〉 =
1√
n

1√
n− 1

y†y†|n− 2〉 = . . . =
1√
n!

(y†)n|0〉. (14.43)

Alternatively, since

y† =
q − ip√

2
, (14.44)

we have

|n〉 =
1√
2nn!

(q − ip)n|0〉. (14.45)

Now project this on the q′ state:

〈q′|n〉 =
1√
2nn!

〈q′|(q − ip)n|0〉 =
1√
2nn!

(

q′ − ∂

∂q′

)

〈q′|(q − ip)n−1|0〉

=
1√
2nn!

(

q′ − ∂

∂q′

)n

〈q′|0〉. (14.46)

Since we know the ground-state wavefunction (14.28) we thus have a blueprint
for how to construct all the wavefunctions,

ψn(q′) =
(−1)n

√
π1/22nn!

(

d

dq′
− q′

)n

e−
1

2
q′2

. (14.47)

To work this out, think of

d

dq′

[

e−
1

2
q′2

f(q′)
]

= e−
1

2
q′2

[

d

dq′
f(q′) − q′f(q′)

]

, (14.48)

so we recognize that

e−
1

2
q′2

(

d

dq′
− q′

)

f(q′) =
d

dq′

[

e−
1

2
q′2

f(q′)
]

. (14.49)
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Continuing on, we see

d2

dq′2

[

e−
1

2
q′2

f(q′)
]

=
d

dq′

[

e−
1

2
q′2

(

d

dq′
− q′

)

f(q′)

]

= e−
1

2
q′2

(

d

dq′
− q′

)2

f(q′),

(14.50)
and in general,

(

d

dq′

)n
[

e−
1

2
q′2

f(q′)
]

= e−
1

2
q′2

(

d

dq′
− q′

)n

f(q′). (14.51)

Let f(q′) = e−q′2/2; then we have

(

d

dq′

)n

e−q′2

= e−
1

2
q′2

(

d

dq′
− q′

)n

e−
1

2
q′2

, (14.52)

and the wavefunction has the form

ψn(q′) =
(−1)n

√
π1/22nn!

e
1

2
q′2

(

d

dq′

)n

e−q′2

. (14.53)

Now let us make contact with some 19th century mathematics. We recall
that

(

d

dq′

)n

e−q′2

= e−q′2 × polynomial of order n in q′. (14.54)

The standard definition for the Hermite polynomial Hn(q′) is

(−1)n

(

d

dq′

)n

e−q′2

= e−q′2

Hn(q′). (14.55)

Thus our nth wavefunction is

ψn(q′) =
1√

π1/22nn!
Hn(q′)e−

1

2
q′2

. (14.56)

We already know the first two Hn’s, from ψ0 and ψ1 we find

H0(q
′) = 1, H1(q

′) = 2q′. (14.57)

And from the definition,

(

d

dq′

)2

e−q′2

=
d

dq′

(

−2q′e−q′2
)

= (4q′2 − 2)e−q′2

, (14.58)

so
H2(q

′) = 4q′2 − 2. (14.59)

Figure 14.1 shows how these wavefunctions look. Notice that the n = 0
wavefunction is even, and has no zeros. The n = 1 wavefunction is odd, and
vanishes once at q′ = 0. The n = 2 wavefunction is again even, but has zeros
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Figure 14.1: The lowest three wavefunctions of the harmonic oscillator, corre-
sponding to the energies E0 = h̄ω/2, E1 = 3h̄ω/2, and 5h̄ω/2.

at q′ = ±1/
√

2. In general, ψn has n zeroes. These wavefunctions have to be
mutually orthonormal:

〈n|n′〉 =

∫ ∞

−∞

dq′ψn(q′)∗ψn′(q′) = δnn′ . (14.60)

Since ψ0 is positive everywhere, it follows that ψ1 must change sign; since ψ2

must be orthogonal to both ψ0 and ψ1, it must have a more complicated struc-
ture.

14.1 Physical variables; Uncertainty principle

The physical harmonic oscillator is described by the Hamiltonian

Ĥ =
p̂2

2m
+

1

2
mω2q̂2. (14.61)

Here m is the mass and ω is the frequency of the oscillator. We want to relate
this to what we did above, where

H =
1

2
p2 +

1

2
q2. (14.62)
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Since the latter has eigenvalues n+1/2, which has no energy scale, the energies
should be related by

Ĥ = Hh̄ω, (14.63)

since the energy scale of the oscillator is h̄ω. Thus,

p̂ = (mh̄ω)1/2p, q̂ =

(

h̄

mω

)1/2

q. (14.64)

Thus the energies of the physical harmonic oscillator are

En =

(

n+
1

2

)

h̄ω, (14.65)

and the canonical commutation relations for the physical position and momen-
tum operators are

[q̂, p̂] = ih̄. (14.66)

Note that this means, on an eigenstate of position,

〈q̂′|q̂ =
h̄

i

∂

∂q̂′
〈q̂′|. (14.67)

From Eq. (14.66) we can derive Heisenberg’s uncertainty principle. (This
derivation appeared on the Final Exam for Physics 3803; for convenience we
repeat it here.) Recall that in homework last term we proved the Cauchy-
Schwartz inequality, for any two vectors:

|〈1|2〉|2 ≤ 〈1|1〉〈2|2〉. (14.68)

Suppose we have two Hermitian operators, q and p that satisfy the Heisenberg
commutation relation

[q, p] = ih̄. (14.69)

Suppose | 〉 is some state in which the average values of q and p are q̄ and p̄,

q̄ = 〈 |q| 〉, p̄ = 〈 |p| 〉. (14.70)

Since these average values are numbers, it is also true that

[q − q̄, p− p̄] = ih̄. (14.71)

Then

ih̄ = 〈[q − q̄, p− p̄]〉 = 〈 |(q − q̄)(p− p̄)| 〉 − 〈 |(p− p̄)(q − q̄)| 〉
= 〈 |(q − q̄)(p− p̄)| 〉 − 〈 |(q − q̄)(p− p̄)| 〉∗

= 2iIm〈 |(q − q̄)(p− p̄)| 〉. (14.72)

Now use Cauchy-Schwartz (14.68) for the states

|1〉 = (q − q̄)| 〉, |2〉 = (p− p̄)| 〉, (14.73)
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〈1|1〉〈2|2〉 = 〈 |(q − q̄)2| 〉〈 |(p− p̄)2| 〉
≥ |〈1|2〉|2 = |〈 |(q − q̄)(p− p̄)| 〉|2

= (Re〈 |(q − q̄)(p− p̄)| 〉)2 + (Im〈 |(q − q̄)(p− p̄)| 〉)2

≥ (Im〈 |(q − q̄)(p− p̄)| 〉)2 =

(

h̄

2

)2

, (14.74)

which proves

∆q∆p ≥ h̄

2
, (14.75)

where the rms fluctuations in position and momentum are defined by

(∆q)2 = 〈 |(q − q̄)2| 〉 = 〈 |q2| 〉 − 〈 |q| 〉2, (14.76a)

(∆p)2 = 〈 |(p− p̄)2| 〉 = 〈 |p2| 〉 − 〈 |p| 〉2. (14.76b)


