
Chapter 12

Compatible Observables

Quantum mechanics is a mathematical transcription of what the experimenter
does. In classical mechanics, we represent physical quantities by numbers.
In quantum mechanics, physical quantities are represented by noncommuting
quantities—reflecting the “graininess” of the atomic world. We can only pre-
dict probabilities; the disturbance produced by measurements cannot be made
as small as you like—as in the Stern-Gerlach experiment, measurement of one
quantity destroys all information about another quantity. The language of quan-
tum mechanics necessarily requires use of complex numbers.

We were recognizing that there was a general scheme in which the doublet
system was just one limit, the other being a system with an infinite number of
states. Out of quantum mechanics emerges the classical physics in the macro-
scopic domain. It is a kind of self-consistency, for the measurements which yield
the quantum physics are classical.

We have been talking of systems which have only one property. This is
not realistic, but was a harmless simplification. Consider the Stern-Gerlach
experiment as sketched in Fig. 12.1. In this experiment the magnetic moment
in the z direction is measured, µz. We generalize this property to a general one
A. To have a clean experiment, we want to select atoms with a well defined
speed, so we do a vx selection. Alternatively, we could do the vx selection after
the beam goes through the Stern-Gerlach apparatus. It makes no difference
whether vx is measured before or after µz is measured. Thus, we say vx, µz are
compatible properties.

We generalize this be considering two compatible properties A1, A2; that
is they are non-interfering, in that measurement of one does not interfere with
measurement of the other. Let’s suppose we make a selective measurement
of A1, followed by a selective measurement of A2, or vice versa. In terms of
measurement symbols
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where a′

1
is the value of A1 selected and a′

2
is the value of A2 selected. What

this says is that the order of doing compatible measurements does not matter.
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Figure 12.1: Sketch of a Stern-Gerlach experiment. Atoms are heated in the
furnace, exit through a small hole, and collimated by a slit in an otherwise
opaque screen. The atomic beam then enters an inhomogeneous magnetic field,
where the atoms are deflected because of the interaction between the dipole
moment of the atoms and the magnetic field.

The net result is a selective measurement in which A1, A2 have definite values.
It follows that the operators representing compatible physical properties are

communtative,
A1A2 = A2A1. (12.2)

To prove this, remember how operators are constructed in terms of measurement
symbols,
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so because the order of the labels in the measurement symbol do not matter,
that is, the order of selection makes no difference, it follows that

A1A2 − A2A1 ≡ [A1, A2] = 0, (12.5)

that is, the commutator of two compatible operators vanishes.
By measuring property 1 and property 2, one selects a state which has

a definite value of both properties. Instead of describing the system by one
number, we have a description in terms of 2, or more, numbers. Everything is
really the same.

For a single physical property, recall that we had

|a′||a′′| = δ(a′, a′′)|a′|, (12.6a)

and
∑

a′

|a′| = 1, (12.6b)
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where the latter represents a totally nonselective measurement, or no measure-
ment at all, where all systems are selected. What’s involved here is the question
of identity (a′ = a′′), distinction (a′ 6= a′′), and completeness (

∑

a′ |a′| = 1).

Now consider two compatible properties, and two selections. Then the coun-
terpart of Eq. (12.6a) is
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where we might write
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The product of measurement symbols is zero unless the pair of values is identi-
cal. That is, the second measurement annihilates the first unless it is an exact
replication of the first. Identity means all (both) properties are the same, whicle
distinction means that at least one property is different.

Compactly, we can still write

|a′||a′′| = δ(a′, a′′)|a′|, (12.9)

where a′ = a′

1
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, the pair of numbers.

What about completeness?
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since all systems have some possible value of A1 and A2.

The only difference now is that a state is specified not by one number, but
by two.

In general, there might be c compatible properties specifying a state:

A1, A2, A3, . . . , Ac. (12.11)

If these are compatible, they must all commute with each other,

[Ai, Aj ] = 0. (12.12)

We have a lot of freedom in choosing compatible properties. Ordinarily,
there are only a finite number of independent compatible operators. Any other
property is either

1. a function of the other properties, or

2. is incompatible with the other properties.
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If B is incompatible with A this means the commutator of these two operators
is not zero,

[B, A] 6= 0. (12.13)

To specify a state, we measure all of its compatible properties,
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where the labels are the values of a complete set of compatible properties. If we
try to measure more, we will disturb the values found by previous measurements.
For shorthand we will write

|a′| = |a′

1
a′

2
. . . a′

c|. (12.15)

A selective measurement picks out atoms in a definite state: |a′|. A state is
determined when all compatible properties are specified.

Now recall we also talked about selective measurements in which a state
changes, which we decomposed into right and left vectors,

|a′a′′| = |a′〉〈a′′|; (12.16)

now the a′ is to be regarded as a set of numbers.
We could have begun with a different physical property B1 (say µx not µz),

select a second property compatible with it, and so on. In this way we get a
second complete set of physical properties,

B1, B2, , . . . , Bc, [Bi, Bj ] = 0. (12.17)

A selective measurement in the B description is given by
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and again,
|b′b′′| = |b′〉〈b′′| (12.19)

represents a measurement in which (reading from left to right) b′ = {b′
1
, . . . , b′c}

is selected, but b′′ = {b′′
1
, . . . , b′′c} is emitted.

The inner product of a left and right vector, belonging to the A and B

descriptions respectively, is the probability amplitude (or transformation func-
tion),

〈a′|b′〉, (12.20)

where again the a′’s and b′’s are sets of numbers specifying the two states. The
probability of measuring a′ = {a′
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, . . . , b′c} (or vice versa) is obtained by taking the absolute

square of the probability amplitude,

p(a′, b′) = |〈a′|b′〉|2. (12.21)

All that’s involved now is a collection of numbers, rather than a single number.
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Now let’s express this in terms of eigenvectors. For a single property

(A − a′)|a′〉 = 0, (12.22)

where |a′〉 is the eigenvector and a′ is the eigenvalue. For c compatible proper-
ties, we have a set of eigenvalue equations:
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which says |a′〉 is a simultaneous eigenvector of A1, A2, . . ., Ac. Now pick out
the ith and jth properties; the eigenstate satisfies
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or if we subtract these two equations,
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Now the commutator obeys the properties of linearity:

[X + Y, Z] = [X, Z] + [Y, Z], (12.27a)

[X, Y + Z] = [X, Y ] + [X, Z]. (12.27b)

Therefore we conclude
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But unity commutes with everything, so the above is
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because the properties are compatible. Further, if
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holds for a complete set of eigenstates, then by summing over all the states,
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In general, we cannot have a vector being an eigenstate of two operators
unless the operators commute. The theory itself must tell us what operators,
properties are compatible. The theory itself must tell us what the properties
are.


