Introduction to Quantum Mechanics I Quiz 5

Name:

April 4, 2012

Using the 2×2 matrices,

$$\sigma_x = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}, \quad \sigma_y = \begin{pmatrix} 0 & -i \\ i & 0 \end{pmatrix}, \quad \sigma_z = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}.$$

factor

$$\frac{1+\sigma_x}{2} = \psi \psi^{\dagger},$$

where ψ and ψ^{\dagger} are two-component column and row vectors, respectively. Write ψ explicitly. What state of the spin-1/2 system does this eigenvector correspond to?

Solution:

$$\frac{1+\sigma_x}{2} = \frac{1}{2} \begin{pmatrix} 1 & 1 \\ 1 & 1 \end{pmatrix} = \frac{1}{\sqrt{2}} \begin{pmatrix} 1 \\ 1 \end{pmatrix} \frac{1}{\sqrt{2}} (1,1),$$

thus

$$\psi_{+x} = \frac{1}{\sqrt{2}} \left(\begin{array}{c} 1\\1 \end{array} \right)$$

This corresponds to a state in which σ_x has the value +1.