
Chapter 8

Developments

We have now constructed the basic framework of quantum mechanics. In this
chapter, we will introduce some secondary concepts that are important in prac-
tice.

8.1 Matrix elements

A general algebraic element, say one representing a physical property, can be
written as a linear combination of the n2 measurement symbols,

|a′a′′| = |a′〉〈a′′|. (8.1)

We see this as follows:

X = 1X1 =

(

∑

a′

|a′〉〈a′|

)

X

(

∑

a′′

|a′′〉〈a′′|

)

=
∑

a′a′′

|a′〉〈a′|X |a′′〉〈a′′| =
∑

a′a′′

〈a′|X |a′′〉|a′a′′|, (8.2)

where we see the coefficients of expansion, 〈a′|X |a′′〉, of X in terms of the
measurment symbols |a′a′′|. We call 〈a′|X |a′′〉 the a′-a′′ matrix element of X .
This generalizes what we had in Eqs. (7.37a) and (7.37b) for the σ’s in terms
of a systematic notation. We write these n2 = n × n elements in an array:
〈a′|X |a′′〉 is the element in the a′th row, a′′th column:

X =













〈a1|X |a1〉 〈a1|X |a2〉 . . . 〈a1|X |an〉
〈a2|X |a1〉 〈a2|X |a2〉 . . . 〈a2|X |an〉

. . . . . . . . . . . .

. . . . . . . . . . . .
〈an|X |a1〉 〈an|X |a2〉 . . . 〈an|X |an〉













. (8.3)

Instead of working with the measurement symbol representation of X , we can
work directly with this numerical coefficient array, the matrix representing X .
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What are the algebraic properties of these arrays? They correspond to the
algebraic properties of the elements of our algebra:

addition: X + Y, (8.4a)

multiplication by numbers: λX, (8.4b)

multiplication: XY. (8.4c)

For addition, since

X =
∑

a′a′′

〈a′|X |a′′〉|a′a′′|, (8.5a)

Y =
∑

a′a′′

〈a′|Y |a′′〉|a′a′′|, (8.5b)

we have

X + Y =
∑

a′a′′

(〈a′|X |a′′〉 + 〈a′|Y |a′′〉) |a′a′′|

=
∑

a′a′′

〈a′|X + Y |a′′〉|a′a′′|, (8.6)

where the last line follows from the definition of the matrix element of X + Y .
An array for X + Y is obtained by adding corresponding coefficients in arrays
for X and Y (same row, same column). For example,

σx + σy =

(

0 1 − i
1 + i 0

)

. (8.7)

This result may also be seen from the distributive property of multiplication:

〈a′|X + Y |a′′〉 = 〈a′| (X |a′′〉 + Y |a′′〉) = 〈a′|X |a′′〉 + 〈a′|Y |a′′〉. (8.8)

For multiplication by a number,

λX =
∑

a′a′′

λ〈a′|X |a′′〉|a′a′′| =
∑

a′a′′

〈a′|λX |a′′〉|a′a′′|, (8.9)

again from the definition. So, for example,

2σx =

(

0 2
2 0

)

. (8.10)

Not so trivial is multiplication:

XY =
∑

a′a′′

〈a′|X |a′′〉|a′a′′|
∑

a′′′aiv

〈a′′′|Y |aiv〉|a′′′aiv|

=
∑

a′a′′a′′′aiv

〈a′|X |a′′〉〈a′′′|Y |aiv〉|a′a′′||a′′′aiv|, (8.11)
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so since |a′a′′||a′′′aiv| = δ(a′′, a′′′)|a′aiv|,

XY =
∑

a′a′′′

〈a′|XY |a′′′〉|a′a′′′|, (8.12)

where
〈a′|XY |a′′′〉 =

∑

a′′

〈a′|X |a′′〉〈a′′|Y |a′′′〉. (8.13)

A second derivation uses the expression of a completely nonselective measure-
ment:

1 =
∑

a′′

|a′′〉〈a′′|, (8.14)

so
〈a′|XY |a′′′〉 = 〈a′|X1Y |a′′′〉 =

∑

a′′

〈a′|X |a′′〉〈a′′|Y |a′′′〉. (8.15)

In words, the rule is: To find the entry of XY is the a′th row, a′′′th column,
take in entries in the a′th row of X and in the a′′′th column of Y , multiply
them together term by term, and add the results together. This row on column
multiplication rule is indeed that of matrices.

Here is an example:

σxσy =

(

0 1
1 0

)(

0 −i
i 0

)

=

(

i 0
0 −i

)

= i

(

1 0
0 −1

)

= iσz. (8.16)

To reiterate, we call 〈a′|X |a′′〉 an element of the matrix representing X , or
in short, the matrix element of X (between the a′ a′′ states)

How do we represent the multiplication of algebraic elements and vectors,
such as

σx|+〉 = |−〉? (8.17)

In the a “coordinate system” we ask, what are the components of the vector
X | 〉, in terms of the components of | 〉?

〈a′|X | 〉 =
∑

a′′

〈a′|X |a′′〉〈a′′| 〉, (8.18)

which represents row on column multiplication of the matrix for X on the col-
umn vector, the wavefunction, representing | 〉, ψ(a′′) = 〈a′′| 〉.

Here’s again the spin-1/2 example (8.17), which is represented by
(

0 1
1 0

)(

1
0

)

=

(

0
1

)

, (8.19)

because 〈+|+〉 = 1, 〈−|+〉 = 0. We can also multiply to the left:

〈−|σx = 〈+|, (8.20)

is represented by

(0, 1)

(

0 1
1 0

)

= (1, 0). (8.21)
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The general rule in the latter case is

〈 |X |a′′〉 =
∑

a′

〈 |a′〉〈a′|X |a′′〉 =
∑

a′

ψ(a′)∗〈a′|X |a′′〉, (8.22)

again, row on column multiplication.

8.2 Eigenvectors and eigenvalues

Consider the physical quantity A itself, which has possible values a′:

A =
∑

a′

a′|a′| =
∑

a′

a′|a′a′|. (8.23)

The matrix of A is thus very special,

〈a′|A|a′′〉 = a′δ(a′, a′′), (8.24)

or

A =













a1 0 0 . . . 0
0 a2 0 . . . 0
0 0 a3 . . . 0
. . . . . . . . . . . . . . .
0 0 0 . . . an













, (8.25)

which is a diagonal matrix. For example, σz is diagonal, for it has a definite
value in the states |+〉 and |−〉. Here

A|a′〉 = a′|a′〉, 〈a′|A = 〈a′|a′, (8.26)

that is |a′〉, 〈a′| represent a state in which A has the value a′.
Before proceeding, let’s introduce a bit more language. Since an element of

the measurment algebra X acts on a vector to produce another vector,

X |a′〉, (8.27)

we call X an operator, since it operates on vectors to produce vectors.
Now when an operator acts on a vector to give back the same vector, apart

from a numerical multiple,
A|a′〉 = a′|a′〉, (8.28)

we say that |a′〉 is an eigenvector (“characteristic” or “proper” vector) of A, and
the number a′ is an eigenvalue (or “characteristic” value) of A. An eigenvector
represents a state in which the operator has a definite value, the eigenvalue.
The construction

A =
∑

a′

a′|a′〉〈a′| (8.29)

expands A in terms of its eigenvectors and eigenvalues.
We can now ask a mathematical question. Given a certain operator, what

are its eigenvectors and eigenvalues? The corresponding physical question is:
What are the states in which the physical property has a definite value, and
what are those values?
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8.2.1 Eigenvectors for spin-1/2

Consider
σz′ = σx sin θ cosφ+ σy sin θ sinφ+ σz cos θ. (8.30)

We ask, what are the possible value of σz′ , and what are the states in which σz′

assumes those definite values? To find the eigenvalues and eigenvectors of σz′

it is convenient to work in the matrix representation, where

σx =

(

0 1
1 0

)

, σy =

(

0 −i
i 0

)

, σz =

(

1 0
0 −1

)

. (8.31)

Thus

σz′ =

(

cos θ sin θ e−iφ

sin θ eiφ − cos θ

)

. (8.32)

The eigenvalue equation
σz′ |σ′

z′〉 = σ′
z′ |σ′

z′〉 (8.33)

corresponds to the matrix equation
(

cos θ sin θ e−iφ

sin θ eiφ − cos θ

)(

ψ(+)
ψ(−)

)

= σ′

(

ψ(+)
ψ(−)

)

, (8.34)

where we have simplified the notation by writing σ′
z′ = σ′. Reference is here

being implicitly made to a standard set of vectors,

(

1
0

)

,

(

0
1

)

, corresponding

to definite values of σz , ±1, respectively. Rewrite this equation as
(

cos θ − σ′ sin θ e−iφ

sin θ eiφ − cos θ − σ′

)(

ψ(+)
ψ(−)

)

= 0. (8.35)

This system of two simultaneous homogeneous equations has a nonzero solution
for ψ only if the coefficient matrix has a vanishing determinant:

0 = det

(

cos θ − σ′ sin θ e−iφ

sin θ eiφ − cos θ − σ′

)

= σ′2 − cos2 θ − sin2 θ = σ′2 − 1, (8.36)

so as we well know,
σ′2 = 1, σ′ = ±1. (8.37)

What are the corresponding eigenvectors (wavefunctions)? Write out the
equations explicitly for σ′ = +1:

(cos θ − 1)ψ(+) + sin θ e−iφψ(−) = 0, (8.38a)

sin θ eiφψ(+) − (cos θ + 1)ψ(−) = 0, (8.38b)

or introducing half-angles,

sin2 θ

2
ψ(+) = sin

θ

2
cos

θ

2
e−iφψ(−), (8.39a)

sin
θ

2
cos

θ

2
eiφψ(+) = cos2

θ

2
ψ(−). (8.39b)
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Both these equations are equivalent to

sin
θ

2
ψ(+) = cos

θ

2
e−iφψ(−). (8.40)

The two equations give the same information because of the determinant condition—
we can only extract two pieces of information, here σ′ and ψ(+)/ψ(−), from
two equations. The above equation will be satisfied if

ψ(+) = A cos
θ

2
e−iφ/2, ψ(−) = A sin

θ

2
eiφ/2. (8.41)

Evidently, the eigenvector equation does not determine an overall factor A mul-
tiplying both components of a wavefunction. A is nearly determined by the
requirement that a physical state be described by a unit vector. In terms of the
wavefunction this means

|ψ(+)|2 + |ψ(−)|2 = 1, (8.42)

or

|A|2
(

cos2
θ

2
+ sin2 θ

2

)

= 1, (8.43)

or
|A| = 1, A = eiα, (8.44)

where α is an arbitrary real number. Thus

ψ+z′ = eiα

(

cos θ
2
e−iφ/2

sin θ
2
eiφ/2

)

; (8.45)

when α = 0, this agrees with the wavefunction found in Eq. (7.36); when α =
φ/2, this agrees with the wavefunction found in Eq. (4.35).

For σ′ = −1, we’ll look at just one of the two equivalent equations:

(cos θ + 1)ψ(+) + sin θ e−iφψ(−) = 0, (8.46)

or

cos2
θ

2
ψ(+) + cos

θ

2
sin

θ

2
e−iφψ(−) = 0, (8.47)

or equivalently

cos
θ

2
ψ(+) = − sin

θ

2
e−iφψ(−), (8.48)

which determines the wavefunction up to a multiplicative factor,

ψ(+) = −B sin
θ

2
e−iφ/2, ψ(−) = B cos

θ

2
eiφ/2, (8.49)

and again the normalization

|ψ(+)|2 + |ψ(−)|2 = 1 (8.50)
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implies, for β real,
|B| = 1, or B = eiβ . (8.51)

Thus the second eigenvector, belonging to σ′
z′ = −1 is

ψ−z′ = eiβ

(

− sin θ
2
e−iφ/2

cos θ
2
eiφ/2

)

, (8.52)

which again reproduces previous results.
The orthogonality of the two different wavefunctions, ψ+z′ , ψ−z′ , follows

automatically from the eigenvalue problem: Multiply the latter, in general,

A|a′′〉 = a′′|a′′〉, (8.53)

on the left by 〈a′| to get

〈a′|A|a′′〉 = 〈a′|a′′|a′′〉 = a′′〈a′|a′′〉, (8.54)

while the corresponding eigenvalue problem for left vectors,

〈a′|A = a′〈a′|, (8.55)

may be multiplied on the right by |a′′〉:

〈a′|A|a′′〉 = a′〈a′|a′′〉. (8.56)

Eqs. (8.54) and (8.56) are the same: in the first, we consider A as acting to
the right, in the second to the left. In either case, we have the identical matrix
element of A. Thus we conclude

(a′ − a′′)〈a′|a′′〉 = 0. (8.57)

So if a′ 6= a′′, 〈a′|a′′〉 = 0. Eigenvectors belonging to different eigenvalues are
orthogonal. In other words, vectors belonging to physically different states are
orthogonal.

The following sketches a general procedure. Suppose we solve the eigenvalue
problem

A|a′〉 = a′|a′〉, (8.58)

and find all n eigenvalues and eigenvectors. Suppose that all the a′’s are differ-
ent. Then the n different eigenvectors |a′〉 are orthogonal to each other. These
vectors can be normalized so we obtain a set of n orthonormal vectors—these
vectors form a coordinate system since there are only n indepdendent vectors
in the n-dimensional space of states.

〈a′|a′′〉 = δ(a′, a′′). (8.59)

Any vector in the space can be expressed as a linear combination of these vectors,
which means

1 =
∑

a′

|a′〉〈a′|. (8.60)
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We can then construct A in terms of its eigenvectors and eigenvalues,

A = A1 = A
∑

a′

|a′〉〈a′| =
∑

a′

a′|a′〉〈a′|. (8.61)

Let’s now eliminate a stage of this process and get the normalization auto-
matically. (We had done this before, even before we constructed the machinery
of quantum mechanics.) We do this by considering the measurement symbol, in
the spin-1/2 example:

|σ′
z′ = +1| =

1 + σz′

2
= | + z′〉〈+z′|, (8.62)

or, in terms of wavefunctions and matrices,

〈σ′
z | + z′〉〈+z′|σ′′

z 〉 = ψ+z′(σ′
z)ψ+z′(σ′′

z )∗ = 〈σ′
z |

1 + σz′

2
|σ′′

z 〉. (8.63)

Explicitly, since as a matrix

σz′ = 〈σ′
z |σz′ |σ′′

z 〉 =

(

cos θ sin θ e−iφ

sin θ eiφ − cos θ

)

, (8.64)

we have as a matrix

1 + σz′

2
= 〈σ′

z |
1 + σz′

2
|σ′′

z 〉 =

(

cos2 θ
2

cos θ
2

sin θ
2
e−iφ

cos θ
2

sin θ
2
eiφ sin2 θ

2

)

=

(

cos θ
2
e−iφ/2

sin θ
2
eiφ/2

)(

cos
θ

2
eiφ/2, sin

θ

2
e−iφ/2

)

, (8.65)

where we have noted that row on column multiplication of a column vector on a
row vector gives a (2×2) matrix. The two factors are ψ+z′ and ψ∗

+z′ . Note that
three of the matrix elements determine the coefficients in the wavefunctions; the
fourth provides a test of consistency. A second test is passed when we see that
the row and column vectors here are complex conjugates of each other. There
is a phase ambiguity in this separation—we can multiply the column vector by
eiα, and the row vector by e−iα. Thus the wavefunction is

ψz′ = eiα

(

cos θ
2
e−iφ/2

sin θ
2
eiφ/2

)

, (8.66)

which is the same as Eq. (8.45).
Similarly,

1 − σz′

2
=

(

sin2 θ
2

− sin θ
2

cos θ
2
e−iφ

− sin θ
2

cos θ
2
eiφ cos2 θ

2

)

=

(

− sin θ
2
e−iφ/2

cos θ
2
eiφ/2

)(

− sin
θ

2
eiφ/2, cos

θ

2
e−iφ/2

)

= ψ−z′ψ∗
−z′ , (8.67)

where

ψ−z′ = eiβ

(

− sin θ
2
e−iφ/2

cos θ
2
eiφ/2

)

, (8.68)

which is the same as Eq. (8.52).
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8.3 The adjoint

From time to time we have mentioned our freedom to read equations from left
to right or from right to left. Suppose we have

|a′a′′|. (8.69)

This means:

• L→R: select a′, put into a′′.

• R→L: select a′′, put into a′.

We now invent an operation to express this change in the convention in terms
of which we read the symbols. We’ll call this operation the adjoint, denoted by
† (dagger), defined by

|a′a′′|† = |a′′a′|; (8.70)

† means reverse the convention of reading symbols, but write the result in the
original convention. Thus, in the L→ R convention,

• |a′a′′| means: select only a′, put into a′′,

• |a′a′′|† = |a′′a′| means: select only a′′, put into a′.

Suppose we had a sequence of measurements:

(

|a′a′′||a′′′aiv|
)†

= |aiva′′′||a′′a′|, (8.71)

since † means read everything the other way. But the last expression is the same
as

|a′′′aiv|†|a′a′′|†. (8.72)

So, the adjoint of a product is the product of the adjoints in the opposite order.
Since any operator is a linear combination of measurement symbols of the above
type, and the adjoint operation has no effect on addition (the order of addition
is irrelevant), we have the general algebraic statement

(XY )† = Y †X†. (8.73)

Suppose we have
|a′b′||c′d′|, (8.74)

where a′, b′, c′, d′ refer to different physical properties (e.g., σx, σy , . . . ). Then
the adjoint of this is

(|a′b′||c′d′|)
†

= |d′c′||b′a′| = |c′d′|†|a′b′|†. (8.75)

But
|a′b′||c′d′| = |a′〉〈b′|c′〉〈d′|, (8.76)
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while the adjoint is

(|a′b′||c′d′|)
†

= |d′〉〈c′|b′〉〈a′| = (|a′〉〈b′|c′〉〈d′|)
†
. (8.77)

Indeed,

(|a′〉〈d′|)
†

= |a′d′|† = |d′a′| = |d′〉〈a′|, (8.78)

but the numerical coefficients are the same only if, generally,

(λX)† = λ∗X†, (8.79)

because 〈c′|b′〉 = 〈b′|c′〉∗. Under the † operation, numbers are complex-conjugated.
Thus † is a kind of extension of complex conjugation to operators.

Let’s collect the rules we have learned:

(X + Y )† = X† + Y †, (8.80a)

(XY )† = Y †X†, (8.80b)

(λX)† = λ∗X†. (8.80c)

We can analyze |a′b′|† = |b′a′| a bit further. In terms of vectors it reads

(|a′〉〈b′|)
†

= |b′〉〈a′|, (8.81)

This means that † reverses the order of the vectors, and

|a′〉† = 〈a′|, 〈b′|† = |b′〉. (8.82)

Physically, this is obvious, since

• 〈a′| represents putting the system into state a′,

• |a′〉 reperesents taking the system out of state a′.

These two meanings are just interchanged by †.
We also note that

X†† = X, (8.83)

because reversing the convention of reading the order twice carries us back to
where we started.

Finally, look at

|b′〉 =
∑

a′

|a′〉〈a′|b′〉. (8.84)

Take the adjoint of this:

|b′〉† = 〈b′| =
∑

a′

〈a′|b′〉∗〈a′| =
∑

a′

〈b′|a′〉〈a′|, (8.85)

which is indeed correct.
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Let’s look at our spin-1/2 operators:

σ†
x = (|−〉〈+| + |+〉〈−|)† = |+〉〈−| + |−〉〈+| = σx, (8.86a)

σ†
y = (i|−〉〈+| − i|+〉〈−|)

†
= −i|+〉〈−|+ i|−〉〈+| = σy, (8.86b)

σ†
z = (|+〉〈+| − |−〉〈−|)

†
= |+〉〈+| − |−〉〈−| = σz, (8.86c)

1† = (|+〉〈+| + |−〉〈−|)
†

= |+〉〈+| + |−〉〈−| = 1 (8.86d)

These operators are their own adjoints. We say that they are self-adjoint or
Hermitian. The adjoint operation is often called Hermitian conjugation. To
be self-adjoint is a requirement for any operator which represents a physical
property:

A =
∑

a′

a′|a′| = A†, (8.87)

since a′ is real and

|a′|† = (|a′〉〈a′|)† = |a′〉〈a′| = |a′|. (8.88)

Could we have recognized the Hermitian property of the σ’s from the corre-
sponding matrices? Yes. To see how, consider a general operator expressed in
terms of its matrix elements:

X =
∑

a′a′′

|a′〉〈a′|X |a′′〉〈a′′| =
∑

a′a′′

〈a′|X |a′′〉|a′a′′|. (8.89)

The adjoint is

X† =
∑

a′a′′

〈a′|X |a′′〉∗|a′′a′| =
∑

a′′a′

〈a′′|X |a′〉∗|a′a′′|, (8.90)

where the last is obtained by relabelling the summation variables, a′ ↔ a′′. On
the other hand, from the definition of the matrix elements of the operator X†,

X† =
∑

a′a′′

〈a′|X†|a′′〉|a′a′′|, (8.91)

so
〈a′|X†|a′′〉 = 〈a′′|X |a′〉∗. (8.92)

The matrix of the adjoint operator X† is obtained from the matrix of X by

1. interchanging rows and columns, and

2. taking the complex conjugate of each entry.

Thus, for matrices, the adjoint is the complex conjugate, transposed matrix.
Transposition means that one interchanges rows and columns. A Hermitian
matrix is equal to its own complex-conjugate, transpose. Thus

σx =

(

0 1
1 0

)

= σ†
x, σy =

(

0 −i
i 0

)

= σ†
y , (8.93a)

σz =

(

1 0
0 −1

)

= σ†
z , 1 =

(

1 0
0 1

)

= 1†. (8.93b)
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With numbers ∗ acts like the adjoint:

〈a′′|X |a′〉∗ = 〈a′|X†|a′′〉, 〈1|2〉∗ = 〈2|1〉; (8.94)

∗ reverses the order of factors and takes the adjoint of each.
There is an intimate connection between the † operation and the U operators

discussed previously. Recall that an operator is something which acts on a
vector to give another vector. An operator is a rule which assigns to every
vector another vector: it is a mapping. If the mapping preserves the length of
every vector (analogous to a rotation of Euclidean vectors), it is called a unitary

operator, customarily denoted U .
Let 〈1| be the left vector which is the result of the mapping applied to 〈1|:

〈1| = 〈1|U. (8.95)

The corresponding right-vector statement is the adjoint of this:

|1〉 = U †|1〉. (8.96)

If U preserves lengths, U is unitary:

〈1|1〉 = 〈1|1〉, (8.97)

or
〈1|UU †|1〉 = 〈1|1〉, (8.98)

for all vectors |1〉. Clearly this last will be true if

UU † = 1. (8.99)

In homework it is shown that this is a necessary result: A unitary operator is
one for which

U−1 = U †. (8.100)

We’ve seen this in particular examples:

U = ei φ

2
σz = cos

φ

2
+ iσz sin

φ

2
, U † = cos

φ

2
− iσz sin

φ

2
= e−i φ

2
σz = U−1,

(8.101)
since σ†

z = σz.
This last example exhibits a general feature: Any unitary operator can be

written as
U = eiH , H = H†, U † = e−iH = U−1, (8.102)

that is, the unitary operator U is written in terms of a Hermitian operator H .
We’ll not stop to prove this now.

Rotations not only preserve lengths, but all angles between vectors. (You
can either rotate all vectors together, or the reference frame.) How is it with
unitary transformations? If

〈1| = 〈1|U, |2〉 = U †|2〉, (8.103)
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U preserves the scalar product:

〈1]2〉 = 〈1|UU †|2〉 = 〈1|2〉 (8.104)

if UU † = 1.
We showed earlier that transformations of the type

X = U−1XU (8.105)

preserve all algebraic relations

W = X + αY Z implies W = S̄ + αY Z. (8.106)

If U−1 = U † we have here the rule for the unitary transformation of operators.
Is this consistent with the transformation law for vectors? That is, if 〈2|X = 〈1|
does

〈2|X = 〈2|U(U−1XU) = 〈2|XU = 〈1|U = 〈1|. (8.107)

Similarly,
|1〉 = X |2〉 implies |1〉 = X |2〉 (8.108)

because
X|2〉 = U−1XUU †|2〉 = U−1X |2〉 = U †|1〉 = |1〉. (8.109)

What about adjoints of operators?

X = U−1XU = U †XU. (8.110)

Take adjoint:

X
†

= U †X†U = U−1X†U = X†, (8.111)

since U †† = U . The adjoint of the transformed operator is the transform of the
adjoint. In particular, a Hermitian operator remains Hermitian under a unitary
transformation: If

A = U †AU, and A† = A, then A
†

= A† = Ā. (8.112)

Thus is physical property is maintained as a physical property under a unitary
transformation.

All numbers (scalar products, eigenvalues, matrix elements) are maintained
by unitary transformations:

〈1|2〉 = 〈1|2〉, (8.113a)

〈1|X|2〉 = 〈1|UU−1XUU−1|2〉 = 〈1|X |2〉. (8.113b)

A unitary transformation is a kind of rigid motion which does not change in-
nter relations. A unitary transformation represents a change of description of
the physical system; it represents a freedom in describing physical states and
physical properties.

Physically, what are the freedom in describing systems? For example, we can
translate or rotate our coordinate system, or go to a relatively moving coordinate
frame. These freedoms, which have a awful lot to do with the physical world,
have their description in terms of unitary transformations.
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8.4 The Trace

The trace is an operation which maps operators into numbers; this is important,
since numbers, which can be compared with experiment, are the goal of physical
theory.

Consider the mapping

|a′〉〈a′′| −→ 〈a′′|a′〉 = δ(a′, a′′), (8.114)

which takes an operator, a measurement symbol, and assigns a number to it by
simply reversing the order of the vectors. If we started with b vectors instead:

|b′〉〈b′′| −→ 〈b′′|b′〉 = δ(b′, b′′). (8.115)

Are these two statements consistent? After all, the b states can be constructed
from the a states:

|b′〉 =
∑

a′

|a′〉〈a′|b′〉, (8.116a)

〈b′′| =
∑

a′′

〈b′′|a′′〉〈a′′|, (8.116b)

so

|b′〉〈b′′| =
∑

a′

|a′〉〈a′|b′〉
∑

a′′

〈b′′|a′′〉〈a′′|

−→
∑

a′′

〈b′′|a′′〉〈a′′|
∑

a′

|a′〉〈a′|b′〉

=
∑

a′a′′

〈b′′|a′′〉〈a′|b′〉〈a′′|a′〉

=
∑

a′

〈b′′|a′〉〈a′|b′〉 = 〈b′′|b′〉 = δ(b′′, b′). (8.117)

Here’s a final example of this mapping:

|a′〉〈b′| −→ 〈b′|a′〉. (8.118)

Check consistency of this by expressing b states in terms of a states:

〈b′| =
∑

a′′

〈b′|a′′〉〈a′′| (8.119)

so that

|a′〉〈b′| = |a′〉
∑

a′′

〈b′|a′′〉〈a′′| −→
∑

a′′

〈b′|a′′〉〈a′′|a′〉 = 〈b′|a′〉, (8.120)

since 〈a′′|a′〉 = δ(a′, a′′).
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The operation is consistent; we have here a rule which maps operators into
numbers, called the trace, abbreviated tr:

tr |a′a′′| = δ(a′, a′′), (8.121a)

tr |a′| = 1, (8.121b)

tr |a′b′| = 〈b′|a′〉. (8.121c)

More generally, if X is an arbitrary operator, expressed in terms of its matrix
elements in the a description by

X =
∑

a′a′′

|a′〉〈a′|X |a′′〉〈a′′| =
∑

a′a′′

〈a′|X |a′′〉|a′a′′|, (8.122)

the trace of X is given by

trX =
∑

a′a′′

〈a′|X |a′′〉δ(a′, a′′), (8.123)

or
trX =

∑

a′

〈a′|X |a′〉. (8.124)

That is, the trace is the diagonal sum, or the sum of the diagonal elements of
the matrix of X . This coincides with the usual meaning of the trace of matrices.

Let’s once again consider the spin-1/2 example, where

σx =

(

0 1
1 0

)

, σy =

(

0 −i
i 0

)

, σz =

(

1 0
0 −1

)

, 1 =

(

1 0
0 1

)

. (8.125)

Then
tr σx = tr σy = trσy = 0. (8.126)

These traces had to be the same, since the trace is the sum of the possible values
a physical property can assume—see homework. On the other hand

tr 1 = 2, (8.127)

because there are two states.
In general, if there are n states, the unit operator is represented by the n×n

unit matrix,
1 = diag(1, 1, 1, . . . 1), (8.128)

so
tr 1 = n. (8.129)

What about the trace of the product of two operators? Because

|a′a′′||a′′′aiv| = δ(a′′, a′′′)|a′aiv|, (8.130)

tr
(

|a′a′′||a′′′aiv|
)

= δ(a′′, a′′′)δ(a′, aiv). (8.131)
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In the other order

tr
(

|a′′′aiv||a′a′′|
)

= δ(aiv, a′)tr |a′′′a′′| = δ(aiv, a′)δ(a′′, a′′′)

= tr
(

|a′a′′||a′′′aiv|
)

. (8.132)

Because any operator is a linear combination of such measurement symbols, we
have

trXY = trY X. (8.133)

We can prove this in a different way, using matrix elements:

trXY =
∑

a′

〈a′|XY |a′〉 =
∑

a′a′′

〈a′|X |a′′〉〈a′′|Y |a′〉, (8.134a)

trY X =
∑

a′′

〈a′′|Y X |a′′〉 =
∑

a′a′′

〈a′′|Y |a′〉〈a′|X |a′′〉 = trXY. (8.134b)

Check this with the properties of the σs:

σxσy = iσz, σyσx = −iσz, (8.135)

so
tr iσz = i trσz = tr σxσy = tr σyσx = −i trσz , (8.136)

which proves
trσz = 0 (8.137)

without reference to the explicit construction of the σs. More generally,

trσkσl = tr σlσk = tr
1

2
(σkσl + σlσk) . (8.138)

But we know from Eq. (5.74) that

1

2
(σkσl + σlσk) = δkl1, (8.139)

so we conclude
tr σkσl = δkltr 1 = 2δkl. (8.140)

Another way of writing this is

1

2
tr (σ · a)(σ · a) = a · b. (8.141)

This follows from the identity (5.78),

(σ · a)(σ · b) = a · b + iσ · (a × b), (8.142)

since tr σk = 0.
Remember how probabilities were introduced in terms of measurement sym-

bols:
|b′||a′||b′| = p(a′, b′)|b′|. (8.143)
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Take the trace of this:

tr |b′||a′||b′| = p(a′, b′) tr |b′| = p(a′, b′) = tr |b′||b′|a′|

= tr |b′||a′| = tr |b′〉〈b′|a′〉〈a′| = 〈a′|b′〉〈b′|a′〉, (8.144)

or
p(a′, b′) = |〈a′|b′〉|2, (8.145)

as we know. But sometimes it is more convenient to use the intermediate form

p(a′, b′) = tr |b′||a′|. (8.146)

Again, return to spin 1/2. Let e1, e2 be the directions in which spin-
measurements are made:

p(σ′
1, σ

′
2) = tr |σ′

1||σ
′
2| = tr

1 + σ′
1σ · e1

2

1 + σ′
2σ · e2

2

=
1

4
tr (1 + σ′

1σ · e1 + σ′
2σ · e2 + σ′

1σ
′
2σ · e1σ · e2)

=
1

4
(2 + 0 + 0 + σ′

1σ
′
22e1 · e2)

=
1

2
(1 + σ′

1σ
′
2e1 · e2) =

1

2
(1 + σ′

1σ
′
2 cosΘ), (8.147)

where Θ is the angle between e1 and e2. Thus we recover

p(±1,±2) = cos2
Θ

2
, p(∓1,±2) = sin2 Θ

2
, (8.148)

as we’ve seen many times.


