
Chapter 7

Wavefunctions

The transformation function 〈a′|b′〉 tells how to go from one description (a
states) to another (b states)—from one class of states to another. But we don’t
have to think of all states in a class; we can talk of two states only:

b′ → 2, a′ → 1. (7.1)

Then the probability that if we have selected 2 of subsequently finding 1 (or
vice versa) is

p(1, 2) = |〈1|2〉|2, (7.2)

where 〈1|2〉 is the (inner) product of the vector representing state 1 with the
vector representing state 2. It tells how alike or different the two states are.

Now suppose we describe the system in terms of A measurements. We then
use the algebraic construction of unity,

1 =
∑

a′

|a′〉〈a′|. (7.3)

This carries us from vectors to components of vectors in some coordinate system:

〈1|2〉 = 〈1|
∑

a′

|a′〉〈a′||2〉 =
∑

a′

〈1|a′〉〈a′|2〉. (7.4)

To reiterate, since

|2〉 =
∑

a′

|a′〉〈a′|2〉, (7.5)

we can think of |a′〉 as a unit vector in some coordinate system, and 〈a′|2〉 as
the component of the vector |2〉 in that coordinate system, the projection of |2〉
on the basis vector |a′〉. Since

〈1|2〉 =
∑

a′

〈a′|1〉∗〈a′|2〉, (7.6)
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we have here a complex scalar product, the sum of the products of components
with complex conjugate components. The set of components are also denoted
by

〈a′| 〉 = ψ(a′), (7.7)

where | 〉 represents any state, which is the wavefunction of that state in the A
description., Thus the probability of finding the state |1〉 given that the system
was prepared in the state |2〉 is

p(1, 2) =

∣

∣

∣

∣

∣

∑

a′

ψ1(a
′)∗ψ2(a

′)

∣

∣

∣

∣

∣

2

. (7.8)

This is the form we saw much earlier when we discussed spin-1/2 system. See
Sec. 4.2. Note that this probability makes no reference to A measurements, so
is independent of the “coordinate system.”

The probability that if the system is known to be in state 2, and measiure-
ment of A will yield the value a′ is

p(a′, 2) = |〈a′|2〉|2 = |ψ2(a
′)|2. (7.9)

In general, if ψ is the wavefunction of the state in the A description, |ψ(a′)|2 is
the probability of finding A = a′ in that state. Note the factorization referred
to earlier:

• ψ refers to how the system is prepared,

• a′ refers to what particular measurement is performed on that state.

The two probability statements (7.8) and (7.9) are not independent. For if

〈1| = 〈a′|, |1〉 = |a′〉, (7.10)

then
ψ1(a

′′) = 〈a′′|a′〉 = δ(a′′, a′), (7.11)

and so Eq. (7.8) implies Eq. (7.9).
Finally, we note that the vector representing a state is a unit vector,

〈1|1〉 = 1, (7.12)

which physically expresses the fact that if we initially measure the system to be
in state 1, it will be found with certainty in state 1 in a subsequent measurement.
In terms of the a-wavefunctions,

1 = 〈1|1〉 =
∑

a′

|ψ1(a
′)|2, (7.13)

which says that the square of the length of a unit vector is the sum of the
absolute squares of the components.

In summary, in mathematical language, we have gone just one step beyond
Euclidean geometry to a unitary geometry. The space, the totality of vectors
is not Euclidean, but what is called Hilbert space. In physical terms, we are
describing a geometry of physical measurements—a geometry of states, and a
state space.
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7.1 Spin-1/2 example

We return to spin 1/2. We want to compute ψσ′′

z′

(σ′

z), which is the component,

with respect to spin measurments along the z direction, of a state with a certain
spin value (σ′′

z′ ) along the z′ direction. The measurement symbols for these states
are

|σ′′

z′ = +1| =
1 + σz′

2
, |σ′′

z′ = −1| =
1 − σz′

2
. (7.14)

We describe the system in terms of σz :

σz′ = U−1σzU, (7.15)

by means of the unitary transformation

U = ei θ
2
σyei

φ

2
σz , U−1 = e−i

φ

2
σze−i θ

2
σy . (7.16)

Thus
1 ± σz′

2
= U−1 1 ± σz

2
U, (7.17)

or
|σ′′

z′ = ±1| = U−1|σ′′

z = ±1|U. (7.18)

Since the measurement symbols may be factored,

|σ′′

z′ = ±1| = |σ′′

z′〉〈σ′′

z′ |, |σ′′

z = ±1| = |σ′′

z 〉〈σ
′′

z |, (7.19)

we can factor statement (7.18) into

〈σ′′

z′ | = 〈σ′′

z |U, |σ′′

z′〉 = U−1|σ′′

z 〉. (7.20)

Note that σ′′

z′ and σ′′

z represent the same outcome, the same number, but refer-
ring to measurements along different axes.

• All information about the direction of the axis of measurment is contained
in U , relative to z, the standard direction.

• All information about the outcome of the measurement is contained in
|σ′′

z 〉.

To work out the wavefunctions, the components of |σ′′

z′〉 with respect to |σ′

z〉,

ψσ′′

z′

(σ′

z) = 〈σ′

z |σ
′′

z′〉 = 〈σ′

z |U
−1|σ′′

z 〉, (7.21)

we have to know the action of σx, σy, σz on 〈σ′

z |, |σ
′

z〉. We recall

σx = | − +| + | + −| = |−〉〈+| + |+〉〈−|, (7.22a)

σy = i| − +| − i| + −| = i|−〉〈+| − i|+〉〈−|, (7.22b)

σz = | + +| − | − −| = |+〉〈+| − |−〉〈−|, (7.22c)

1 = | + +| + | − −| = |+〉〈+| + |−〉〈−|. (7.22d)



64 Version of March 26, 2012 CHAPTER 7. WAVEFUNCTIONS

Therefore,

σz |+〉 = |+〉, σz|−〉 = −|−〉, (7.23a)

σx|+〉 = |−〉, σx|−〉 = |+〉, (7.23b)

σy|+〉 = i|−〉, σy |−〉 = −i|+〉, (7.23c)

1|+〉 = |+〉, 1|−〉 = |−〉. (7.23d)

Similarly,

〈+|σz = 〈+|, 〈−|σz = −〈−|, (7.24a)

〈+|σx = 〈−|, 〈−|σx = 〈+|, (7.24b)

〈+|σy = −i〈−|, 〈−|σy = i〈+|, (7.24c)

〈+|1 = 〈+|, 〈−|1 = 〈−|. (7.24d)

Therefore,

|σ′′

z′ = +1〉 ≡ |+, z′〉 = U−1|+, z〉

= e−i
φ

2
σz

(

cos
θ

2
− iσy sin

θ

2

)

|+〉

= e−i
φ

2
σz

(

cos
θ

2
|+〉 + sin

θ

2
|−〉

)

= e−i
φ

2 cos
θ

2
|+〉 + ei

φ

2 sin
θ

2
|−〉

=
∑

σ′

z

|σ′

z〉〈σ
′

z |σ
′′

z′ = +1〉 = ψ+z′(+)|+〉 + ψ+z′(−)|−〉, (7.25)

where +z′ means σ′′

z′ = +1, and |+〉 means |+, z〉. Thus we read off

ψ+z′(+) = e−i
φ
2 cos

θ

2
, ψ+z′(−) = ei

φ
2 sin

θ

2
. (7.26)

Similarly,

|−, z′〉 = e−i
φ

2
σz

(

cos
θ

2
− iσy sin

θ

2

)

|−〉 = e−i
φ

2
σz

(

cos
θ

2
|−〉 − sin

θ

2
|+〉

)

= −e−i
φ

2 sin
θ

2
|+〉 + ei

φ

2 cos
θ

2
|−〉, (7.27)

from which we read off

ψ−z′(+) = −e−i
φ
2 sin

θ

2
, ψ−z′(−) = ei

φ
2 cos

θ

2
. (7.28)

To get further exercise, work out the left vectors,

〈+, z′| = 〈+|U = 〈+|

(

cos
θ

2
+ iσy sin

θ

2

)

ei
φ
2

σz

=

(

cos
θ

2
〈+| + sin

θ

2
〈−|

)

ei
φ

2
σz

= 〈+| cos
θ

2
ei

φ

2 + 〈−| sin
θ

2
e−i

φ

2 , (7.29)
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which implies that

ψ+z′(+)∗ = cos
θ

2
ei

φ

2 . ψ+z′(−)∗ = sin
θ

2
e−i

φ

2 . (7.30)

which are indeed true, and also note

|ψ+z′(+)|2 + |ψ+z′(−)|2 = 1. (7.31)

Similarly,

〈−, z′| = 〈−|U = 〈−|

(

cos
θ

2
+ iσy sin

θ

2

)

ei
φ

2
σz

=

(

cos
θ

2
〈−| − sin

θ

2
〈+|

)

ei
φ
2

σz

= 〈+|

(

− sin
θ

2
ei

φ

2

)

+ 〈−| cos
θ

2
e−i

φ

2 , (7.32)

which correctly implies

ψ−z′(+)∗ = − sin
θ

2
ei

φ

2 , ψ−z′(−)∗ = cos
θ

2
e−i

φ

2 . (7.33)

Finally, check that

0 = 〈+z′| − z′〉 = ψ+z′(+)∗ψ−z′(+) + ψ+z′(−)∗ψ−z′(−)

=

(

ei
φ

2 cos
θ

2

)(

−e−i
φ

2 sin
θ

2

)

+

(

e−i
φ

2 sin
θ

2

)(

ei
φ

2 cos
θ

2

)

= − cos
θ

2
sin

θ

2
+ cos

θ

2
sin

θ

2
= 0. (7.34)

The ± signs, and the phases, which don’t show unp in the probabilities

|ψ+z′(+)|2 = cos2
θ

2
, |ψ−z′(+)|2 = sin2 θ

2
, (7.35)

etc., are crucial for the above cancellation.
We can write the above wavefunction as column vectors,

ψ+z′ =

(

e−i
φ

2 cos θ
2

ei
φ

2 sin θ
2

)

, ψ−z′ =

(

−e−i
φ

2 sin θ
2

ei
φ

2 cos θ
2

)

, (7.36)

where the first row refers to the σz = +1 element, and the second row to
σz = −1. These are nearly the same as the wavefunctions found earlier, in
Eq. (4.35); they are equally as good as those (see homework).

Let’s represent not just the states (vectors) but the algebraic symbols by
arrays. In Eqs. (7.22a)–(7.22d), we express the symbols σ, 1, in terms of the
coefficients of the four measurement sybols |σ′

z〉〈z
′′

z |:
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σx =

(

0 1
1 0

)

, σy =

(

0 −i
i 0

)

, (7.37a)

σz =

(

1 0
0 −1

)

, 1 =

(

1 0
0 1

)

, (7.37b)

where the rows represent the values of σ′

z , the columns the values of σ′′

z . This
is an example of a more general procedure, which we sill describe in the next
chapter.


