
Chapter 6

Probabilities and vectors

Now we must learn how to extract probabilities from our measurement symbols.
Thus, suppose we consider two successive Stern-Gerlach experiments, one of
which measures (selects) a particular vlaue of σz′ , σ′′

z′ , and a second which
selects a particular value of σz , σ′

z . The two directions, z, z′, are in general
not the same. We want to learn how to calculate p(σ′

z , σ
′′

z′), the probability of
finding σz = σ′

z given that the first measurement obtained σz′ = σ′′

z′ .
In general, suppose we have two different properties A and B. We first

select systems with B = b′′. What is the probability of subsequently measuring
A = a′,

p(a′, b′′)?

We have in mind here that a measurement of A or a measurement of B describes
the system fully. If we know the value of either A or B we know all we can about
the system. We cannot measure A and B simultaneously, measurement of A

destroys what is known abouty B. This is precisely the situation with σz , σz′ .
The sequence of selective measurement described above is represented by

|a′||b′′|. (6.1)

The second measuremnt destroys at least some of the information determined
by the first measurement. (Thus, measurement of Jz destroys, in an uncontrol-
lable way, information about Jx.) To see what happens as a result of the A

measurement, we remeasure B:

|b′′||a′||b′′|. (6.2)

This measures the effect of the disturbance produced by the intermediate A

measurment. The net effect is a selection of b′′:

|b′′||a′||b′′| = number|b′′|, (6.3)

since the overall effect is a selection of b′′ and an emission of b′′. What is the
number here? If A = B, b′′ = a′′,

|a′′||a′||a′′| = δ(a′, a′′)|a′′|, (6.4)
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that is, if a′′ = a′, we are just repeating the same selective measurement. Then,
the number is 1, which expresses the certainty of the second measurement giving
A = a′. If a′ 6= a′′, the second measurement rejects all that comes from the first;
the second measurement will certainly not find any systems with the property
A = a′.

This example makes us suspect that

|b′′||a′||b′′| = p(a′, b′′)|b′′|, (6.5)

where p(a′, b′′) is the probability of finding a′ given b′′, In the above example,

p(a′, a′′) = δ(a′, a′′). (6.6)

We will now verify that this is a consistent hypothesis.
Suppose the intermediate measurement is a less selective one, in which either

A = a′ or A = a′′ is selected without discrimination:

|b′′|(|a′| + |a′′|)|b′′| = [p(a′, b′′) + p(a′′, b′′)] |b′′|, (6.7)

where the intermediate measurement corrsponds to a measurement of (A −
a′)(A − a′′). This make sense, because p(a′, b′′) is the fraction of atoms with
A = a′, p(a′′, b′′) is the fraction of atoms with a = a′′, while p(a′, b′′)+ p(a′′, b′′)
is the fraction of atoms with either A = a′ or A = a′′. Fractions, probabilities,
add, as they must.

Suppose the intermediate measurement is a completely non-selective one,

1 =
∑

a′

|a′|, (6.8)

which selects all possible outcomes. Then

|b′′|
∑

a′

|a′||b′′| =
∑

a′

p(a′, b′′)|b′′| = |b′′|, (6.9)

so
∑

a′

p(a′, b′′) = 1. (6.10)

The sum of the probabilites for all possible outcomes is unity.
A further property that probabilities must satisfy is that they be non-

negative. We will prove this later after we develop some more machinery. For
now, we will simply accept the above identification.

6.1 Example

Suppose
b′′ = σ′′

z′ = +1, a′ = σ′

z = +1. (6.11)

Then is
|σ′′

z′ = +1|σ′

z = +1||σ′′

z′ = +1| = p(+z, +z′)|σ′′

z′ = +1|. (6.12)
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Here p(+z, +z′) is the probability of finding σ′

z = +1 if previously the measur-
ment determined σ′′

z′ = +1. In terms of σ’s

1 + σz′

2

1 + σz

2

1 + σz′

2
= p(+z, +z′)

1 + σz′

2
. (6.13)

But we know

σz = σx′ sin θ cosφ + σy′ sin θ sin φ + σz′ cos θ, (6.14)

in terms of the polar angles of ẑ relative to the x′, y′, z′ coordinate system. The
x′ and y′ components in fact don’t matter here:

1 + σz′

2
σx′

1 + σz′

2
= σx′

1 − σz′

2

1 + σz′

2
= 0, (6.15)

since σx′ anticommutes with σz′ amd σ2

z′ = 1. (The vanishing of the above uses

|σz′ = −1||σz′ = +1| = 0.) (6.16)

Thus

1 + σz′

2

1 + σz

2

1 + σz′

2
=

1 + σz′ cos θ

2

1 + σz′

2

1 + σz′

2

=
1 + σz′ cos θ

2
|σ′

z′ = +1|

=
1 + cos θ

2
|σ′

z′ = +1|, (6.17)

from which we conclude

p(+z, +z′) =
1 + cos θ

2
= cos2

θ

2
, (6.18)

as we determined previously. The fact that

P (−z, +z′) = sin2
θ

2
(6.19)

now follows from
∑

σ′

z

p(σ′

z , σ
′′

z′) = 1. (6.20)

The machinery works.

6.2 State vectors

Now we proceed with a further development of our mathematical transcription
of the physical acts of measurement. Recall that we discussed measurements
which changed the value of a physical property, represented by the symbol
|a′a′′|: which selects A = a′, and emits A = a′′. A Stern-Gerlach representation
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of this was sketched in Fig. 2.6. There, for example, the symbol ⊗ represented a
rotation of the spin of the atom about the x axis through 180◦, for example, by
precession about a longitudinal magnetic field. But this picture is misleading,
because we cannot measure what the spin is doing internally. Such an internal
measurement would destory what we are trying to do here. You would be
making a different measurement. We can only say what goes in and what goes
out.

What do we mean by |a′a′′|? The measurement takes atoms from the state
a′ and puts them into the state a′′. We can think of this in two stages, as long
as we don’t try to state how the transition occurs:

1. Atoms are removed from a′.

2. Atoms are put into a′′.

The algebraic counterpart of this two-stage process is written as

|a′a′′| = |a′〉〈a′′|, (6.21)

where |a′〉 represents removal of an atom from a′, 〈a′′| represents placing atoms
in a′′.

We must insist that we cannot analyze the transition between the states a′,
a′′ in time. Is this factorization consistent with everything that went before?
Remember

|a′a′′||a′′′aiv| = δ(a′′, a′′′)|a′aiv|. (6.22)

In the new notation, this becomes

|a′〉〈a′′||a′′′〉〈aiv| = |a′〉〈a′′|a′′′〉〈aiv| = δ(a′′, a′′′)|a′〉〈aiv |, (6.23)

where we have simplified the notation by coalescing the common vertical line.
The above equality is true provided

〈a′′|a′′′〉 = δ(a′′, a′′′), (6.24)

which is a number, describing an internal rearrangement. We interpret this
number 〈a′′|a′′′〉 as follows: Start with no atoms; put atoms out in state a′′;
absorb atoms is state a′′′; put out no atoms. If a′′ 6= a′′′ there is nothing to
absorb, so we get 0.

We now see that every physical state has two “vectors” associated with it:

|a′〉, 〈a′′|. (6.25)

These are unit, orthogonal vectors

〈a′|a′〉 = 1, 〈a′|a′′〉 = 0, a′ 6= a′′. (6.26)

Unlike with ordinary vectors, we don’t multiply vectors by themselves, but one
kind of vector with a different kind of vector. We have a complex geometry;
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〈a′| is some sort of complex conjugate of |a′〉. The geometry is n-dimensional if
there are n values of a′.

Think about 3-dimensional Euclidean geometry. We have three unit orthog-
onal vectors, say ek, k = 1, 2, 3:

ek · el = δkl. (6.27)

We can write an arbitrary vector in terms of these basis vectors:

V =

3
∑

k=1

ekvk, (6.28)

where the components, vk are the projections of V on the axes defined by e1,
e2, e3:

vk = ek · V. (6.29)

Putting these two expression together gives

V =
∑

k

ekek · V =

(

∑

k

ekek

)

·V = 1 ·V, (6.30)

where we see the construction of 1, the unit dyadic (unit symbol) in terms of
the e’s:

1 =
∑

k

ekek. (6.31)

This must hold in any coordinate system, that is, for any set of unit, orthogonal
vectors. Since the above property of 1 holds for any vector V , it implies 1 ·ek =
ek in particular.

This is all very analogous to what we have in our algebra of measurement.
There the unit symbol is

1 =
∑

a′

|a′| =
∑

a′

|a′a′| =
∑

a′

|a′〉〈a′|. (6.32)

Now, however, in the sum, we have the two different kinds of vectors sitting side
by side.

(If, instead, we had the vectors in the other order, it would mean

∑

a′

〈a′|a′〉 =
∑

a′

1 = n, (6.33)

the number of states.)
From the physical meaning of 1 as a totally non-selective measurement, we

know
1|a′a′′| = |a′a′′|1 = |a′a′′|. (6.34)

That is,
1|a′〉〈a′′| = |a′〉〈a′′|, |a′〉〈a′′|1 = |a′〉〈a′′|. (6.35)
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In the first case, 〈a′′| is inert—nothing happens to it; while in the second, |a′〉
is inert. Thus we conclude

1|a′〉 = |a′〉, 〈a′′|1 = 〈a′′|. (6.36)

Let’s see how this works out:

1|a′〉 =

(

∑

a′′

|a′′〉〈a′′|

)

|a′〉 =
∑

a′′

|a′′〉〈a′′|a′〉 =
∑

a′′

|a′′〉δ(a′′, a′) = |a′〉, (6.37a)

〈a′′|1 = 〈a′′|
∑

a′

|a′〉〈a′| =
∑

a′

〈a′′|a′〉〈a′| =
∑

a′

δ(a′′, a′)〈a′| = 〈a′′|. (6.37b)

These are just as expected.
Nomenclature: We call |a′〉 a right vector and 〈a′′| a left vector , since in

〈a′′|a′〉 (6.38)

〈a′′| is on the left, |a′′〉 is on the right. (Dirac called these bra and ket vectors,
since together they form a bra(c)ket.) Each physical state has both a left and a
right vector associated with it.

Back to three-dimensional Euclidean space. We are utterly free to choose a
different coordinate system, defined by the basis vectors

ek′ , k′ = 1, 2, 3. (6.39)

Equally well with these,
∑

k′

ek′ek′ = 1 (6.40)

is the unit dyadic. How are the unit vectors of one coordinate system related
to the unit vectors of another?

ek = 1 · ek =

(

∑

l′

el′el′

)

· ek =
∑

l′

el′(el′ · ek). (6.41)

We call (el′ · ek) is a “direction cosine;” it is the cosine of the angle between ek

and el′ . Or we could do this the other way:

ek′ = 1 · ek′ =

(

∑

l

elel

)

· ek′ =
∑

l

el(el · ek′); (6.42)

(el · ek′) also being a direction cosine, the cosine of the angle between el and
ek′ . Here the direction cosines which express the old vectors in terms of the new
vectors, and the new vectors in terms of the old vectors, are exactly the same.

How is it with our measurement algebra? Here, changing the coordinate sys-
tem corresponds to measuring different physical quantities—such as components
of angular momentum in one, or another, direction. Supose we have
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• physical quantities: A B (e.g., Jz, Jz′)

• typical results of measurements: a′ b′

• corresponding states: |a′〉, 〈a′| |b′〉, 〈b′|.

If we measure property A and get all possible states (no discrimination), we
have the unit symbol, representing no measurement at all. Similarly with B. So

1 =
∑

a′

|a′〉〈a′| =
∑

b′

|b′〉〈b′|. (6.43)

The states are represented by orthogonal unit vectors:

〈a′|a′′〉 = δ(a′, a′′), 〈b′|b′〉 = δ(b′, b′′). (6.44)

{|a′〉}, {|b′〉} are two different orthonormal sets of vectors. We now transform
from one of these orthonormal sets to the other:

〈a′| = 〈a′|
∑

b′′

|b′′〉〈b′′| =
∑

b′′

〈a′|b′′〉〈b′′| = 〈a′|. (6.45)

This expresses how a 〈a′| vector is written in terms of 〈b′′| vectors. The expan-
sion coefficients are scalar products of a and b vectors—these numbers express
how the old coordinate system is related to the new coordinate system. In other
words, 〈a′|b′′〉 is a kind of direction cosine.

How does the transformation work with right vectors?

|a′〉 = 1|a′〉 =
∑

b′′

|b′′〉〈b′′|a′〉. (6.46)

This expresses right |a′〉 vectors in terms of right |b′′〉 vectors, in terms of “di-
rection cosines” 〈b′′|a′〉. But unlike in Euclidean geometry, here there are two
kinds of direction cosines,

〈b′′|a′〉 6= 〈a′|b′′〉. (6.47)

The second kind also appears in

〈b′′|1 = 〈b′′|
∑

a′

|a′〉〈a′| =
∑

a′

〈b′′|a′〉〈a′|, (6.48)

the expansion of left b vectors in terms of left a vectors.
To find the relation between these two kinds of direction cosines, we consider

the probability of finding a particular value of A after selecting a state with a
definite value of B:

|b′′||a′||b′′| = p(a′, b′′)|b′′|, (6.49)

where p(a′, b′′) is the fraction of atoms with A = a′ if the atoms were previously
selected to have B = b′′. Analyze this into six stages:

|b′′〉〈b′′|a′〉〈a′|b′′〉〈b′′| = p(a′, b′′)|b′′〉〈b′′|. (6.50)
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Remove the common left and right b vectors, and we have

〈b′′|a′〉〈a′|b′′〉 = p(a′, b′′). (6.51)

By simply interchanging the letters, b′′ ↔ a′,

〈a′|b′′〉〈b′′|a′〉 = p(b′′, a′), (6.52)

so since the right side of this equation is simply the product of the same two
numbers, we conclude that the probabilities are symmetric,

p(a′, b′′) = p(b′′, a′), (6.53)

as we have already seen in spin-1/2, 1 examples. The probabilities are con-
structed as the product of both kinds of direction cosines.

Now impose the physical requirement that probabilities be real, non-negative
numbers. This will automatcally be true (and it is essentially impossible to think
of any other possibility that is not reducible to this) if

〈a′|b′′〉 = 〈b′′|a′〉∗, (6.54)

for then
p(a′, b′′) = |〈a′|b′′〉|2 ≥ 0. (6.55)

(We have already seen in examples that these “amplitudes” cannot be real.)
That is, the two direction cosines are complex conjugates of each other. This is
the simplest possibility beyond Euclidean geometry, where the direction cosines
are equal. Note that

〈a′| =
∑

b′′

〈a′|b′′〉〈b′′|, |a′〉 =
∑

b′′

|b′′〉〈b′′|a′〉 =
∑

b′′

|b′′〉〈a′|b′′〉∗. (6.56)

This shows that left and right vectors are in some sense complex conjugates of
each other.

Now multiply the above expansion for a left vector by a right vector,
(

〈a′| =
∑

b′

〈a′|b′〉〈b′|

)

|a′′〉, (6.57)

or
〈a′|a′′〉 = δ(a′, a′′) =

∑

b′

〈a′|b′〉〈b′|a′′〉. (6.58)

This means that the sums of the absolute squares of the “direction cosines” is
unity (geometry)

1 =
∑

b′

|〈a′|b′〉|2 =
∑

b′

p(a′, b′) =
∑

a′

p(a′, b′), (6.59)

where the last follows from the symmetry property (6.53). This, physically, is
the fact, built in, that the sum of the probabilities for all outcomes is 1—some
outcome is certain.
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Similarly, we have

〈b′|b′′〉 =
∑

a′

〈b′|a′〉〈a′|b′′〉 = δ(b′, b′′). (6.60)

This last equality is a statement that the b vectors are orthonormal, given that
the a vectors are:

〈b′| =
∑

a′

〈b′|a′〉〈a′|, |b′′〉 =
∑

a′′

|a′′〉〈a′′|b′′〉, (6.61)

so the inner product of these vectors is

〈b′|b′′〉 =
∑

a′a′′

〈b′|a′〉〈a′|a′′〉〈a′′|b′′〉 =
∑

a′

〈b′|a′〉〈a′|b′′〉 = δ(b′, b′′), (6.62)

because 〈a′|a′′〉 = δ(a′, a′′).
Now note that

∑

b′

∑

a′

〈b′|a′〉〈a′|b′〉 =
∑

b′

1 = nb, (6.63a)

∑

a′

∑

b′

〈a′|b′〉〈b′|a′〉 =
∑

a′

1 = na, (6.63b)

where na is the number of a states, and nb is the number of b states. The two
sums are equal, so we conclude that na = nb = n, the number of states of the
system, which is independent of which property is used to define them.

Following Dirac, we call the set of n2 numbers 〈a′|b′〉 the transformation
function. In terms of these numbers, we transform from one coordinate system
to another. We call 〈a′|b′〉 the ab transformation function, and 〈b′|a′〉 the ba

transformation function, which is the complex conjugate of the ab transforma-
tion function.

The ba transformation function undoes, is the inverse of, the ab transforma-
tion function. For if we do the two transformation in succession,

|a′′〉 =
∑

a′b′

|a′〉〈a′|b′〉〈b′|a′′〉 =
∑

a′

|a′〉
∑

b′

〈a′|b′〉〈b′|a′′〉 =
∑

a′

|a′〉δ(a′, a′′).

(6.64)
The net transformation is no transformation at all—the identity transformation.

Suppose we now go from a description in terms of A states to one in terms
of B states and finally to one in C states:

a → b : |b′〉 =
∑

a′

|a′〉〈a′|b′〉, (6.65a)

b → c : |c′〉 =
∑

b′

|b′〉〈b′|c′〉, (6.65b)

so going from a → b → c,

|c′〉 =
∑

a′b′

|a′〉〈a′|b′〉〈b′|c′〉 =
∑

a′

|a′〉〈a′|c′〉, (6.66)



60 Version of March 13, 2012CHAPTER 6. PROBABILITIES AND VECTORS

where in the latter expresses the direct transformation a → c. Thus

〈a′|c′〉 =
∑

b′

〈a′|b′〉〈b′|c′〉 (6.67)

is the composition property of transformation functions. It says how to con-
struct the ac transformation function in terms of the ab and bc transformation
functions. Note that there is a slick method of getting this result:

〈a′|c′〉 = 〈a′|1|c′〉 = 〈a′|
∑

b′

|b′〉〈b′||c′〉 =
∑

b′

〈a′|b′〉〈b′|c′〉. (6.68)

Finally, note that this composition property is compatible with

〈a′|b′〉 = 〈b′|a′〉∗ (6.69)

because taking the complex conjungate of Eq. (6.68) give

〈a′|c′〉∗ =
∑

b′

〈a′|b′〉∗〈b′|c′〉∗, (6.70)

which is the same as
〈c′|a′〉 =

∑

b′

〈c′|b′〉〈b′|a′〉, (6.71)

because the two factors in the summand are simply interchanged.


