
Chapter 5

Construction of Quantum
Mechanics

We are now going to develop the mathematical framework of quantum mechan-
ics, which is tied fundamentally to the process of measurement. It is a symbolic
representation of experiment. We generalize from what is done in the Stern-
Gerlach experiment, where a property µz or Jz is measured. In general, we’ll
say we measure a physical property A, and the results of the measurement are
the possible values of A, which are real numbers:

possible values of A: a1, a2, . . . , an, (5.1)

and we’ll denote a typical value by a′ or a′′. A measurement is also a selection.
In the Stern-Gerlach experiment, we select a particular value of Jz, stopping
all other sub-beams with different Jz values. In general, the experiment has
the schematic form shown in Fig. 5.1. Of course, atoms have more than one
property—we here disregard all but one, A. The beam coming out of the mea-
surement apparatus is said to be in a definite state in which A = a′.

Measurement

Atomic beam Beam with A = a′

Measure A,

select A = a′

Figure 5.1: A general selective measurement. An arbitrary beam of atoms
enters the apparatus, which measures the property A, and selects those atoms
that have the value A = a′. The atoms that leave the apparatus all have the
property A = a′.
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To represent this measurement, we introduce the symbol, the measurement

symbol:
|a′|. (5.2)

(This is not to be confused with an absolute value sign.) It represents a selective
measurement in which the property A is measured, and only those atoms which
have A = a′ are selected.

If we follow one Stern-Gerlach experiment by an identical one, nothing hap-
pens: all atoms entering the first apparatus are selected by the second, as seen
in Fig. 2.5. The second measurment simply verifies the first. Symbolically, we
express this as

|a′| |a′| = |a′|. (5.3)

On the other hand, if we measure a different state, we get nothing, The general
symbolic statement of this is

|a′| |a′′| = 0, if a′ 6= a′′, (5.4)

where 0 is the symbol of a measurement that rejects everything. What the
first selects, the second rejects. (It makes no difference if these equations are
read from right to left or from left to right.) The symbol 0 has the following
properties,

|a′| 0 = 0,

0 |a′| = 0, (5.5)

0 0 = 0.

The first two equations say that if we attempt to measure a property, before or
after rejecting everything, you get nothing. We are beginning to see an algebra,
in which the multiplication of symbols represents performing one experiment
after another.

Now, what do we mean by the addition of measurement symbols,

|a′| + |a′′| =? (5.6)

It represents a less selective measurement, in which the selected atoms have
either property A = a′ or A = a′′ without discrimination. We do not mean that
you measure a′, a′′ separately, and put these selected “beams” back together.
No separation of atoms with property A = a′ or A = a′′ is made. Intervention
by measurment is a dramatic event. Here, we do not distinguish a′ from a′′ in
any way.

By the physical meaning of addition, the order does not matter:

|a′| + |a′′| = |a′′| + |a′|. (5.7)

Similarly, we could perform an even less selective measurement in which A =
a′, a′′, or a′′′ is selected without discrimination. This is represented by the
symbol

|a′| + |a′′| + |a′′′|, (5.8)
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where the terms can be written in any order. We can keep going in this manner
until we select atoms which have any value of the property A, without discrim-
ination. Then we reject no atoms. The symbolic transcription of this is

|a1| + |a2| + |a3| + . . . + |an| =
∑

a′

|a′| = 1, (5.9)

where the summation sign means that we sum over all possible values of a′

from a1 through an, and where 1 is a symbol for a measurement that selects all
systems without discrimination—that is, no measurement at all, since nothing
is done to the “beam.” The properties of 1 are evident, since it corresponds to
letting everything through:

|a′| 1 = |a′|,

1 |a′| = |a′|,

1 1 = 1, (5.10)

1 0 = 0,

0 1 = 0,

1 has the algebraic properties of unity.
Next we ask, does the distrbutive property hold in this new algebra? For

example, does the following equation hold:
(

∑

a′

|a′|

)

|a′′| =
∑

a′

(|a′||a′′|)? (5.11)

The left side of this equation is

1 |a′′| = |a′′|. (5.12)

On the right side, all terms are 0 except |a′′||a′′| = |a′′|, so the right side is

|a′′| + 0 + 0 + . . . + 0 = |a′′|, (5.13)

because |a′′| + 0 means we either we select A = a′′ or reject everything, which
means we simply select A = a′′. This indicates that the distributive property
holds. (The general distributive property is proved in homework.)

Now we want to introduce a symbol for the physical quantity A itself. Since
|a′| represents a “filtration” of the beam, filtering out only those atoms in which
A = a′, we let the symbol for the property A, also called A, satisfy

A|a′| = a′|a′|; (5.14)

on the left side we have the symbol for the property A, and on the right we
have the numerical value A assumes in that state, a′. This means that if we
first select atoms with property A = a′ and then measure A, we will of course
get the value a′. We can read these symbols either way, so we also have

|a′|A = |a′|a′. (5.15)
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From this, we can write A explicitly in terms of the measurement symbols |a1|,
. . . , |an|:

∑

a′

A|a′| =
∑

a′

a′|a′|, (5.16)

where on the left we have

A
∑

a′

|a′| = A 1 = A, (5.17)

since multiplication is distributive. This exhibits A:

A =
∑

a′

a′|a′|. (5.18)

Indeed, this is consistent,

A|a′′| =
∑

a′

a′|a′||a′′| = a′′|a′′|, (5.19)

since every term in the sum is 0, except for a′′|a′′||a′′| = a′′|a′′|. Note that our
definition of A means that

0|a′| = 0, (5.20)

where on the left 0 represents the number zero, while on the right appears the
symbol 0. This is because A − a′ is also a physical quantity, and if A has the
value a′, A − a′ has the value 0 (we are just shifting the origin):

(A − a′)|a′| = 0|a′| = 0; (5.21)

this is just a rewriting of A|a′| = a′|a′|.
Now we have a small check of consistency. If a typical value of A is a′,

the corresponding value of A2 is (a′)2. In terms of measurement symbols, this
means

A2 =
∑

a′

(a′)2|a′|, (5.22)

since a state in which A has the value a′ is a state in which A2 has the value
(a′)2. Is this really the square of A?

A2 = A
∑

a′

a′|a′| =
∑

a′

a′A|a′| =
∑

a′

(a′)2|a′|. (5.23)

Obviously, we could keep on taking powers of A. In general define a function of
A, f(A), by

f(A) =
∑

a′

f(a′)|a′|. (5.24)

This means that f(A) has the value f(a′) when we select A = a′,

f(A)|a′| = f(a′)|a′|. (5.25)

Here are some examples.
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• Suppose for all a′, f(a′) = 1, then

f(A) =
∑

a′

1|a′| =
∑

a′

|a′| = 1, (5.26)

the function is just the unit symbol.

• If f(a′) = 0 for all a′,

f(A) =
∑

a′

0|a′| = 0, (5.27)

the function is the zero zymbol.

• If f(a′) = 1 for a particular a′, but zero for all others, f(a′′) = 0, a′′ 6= a′,
then

f(A) = |a′|. (5.28)

This means, that the measurement symbol is a function of A. In fact, in
the homework you will prove that

|a′| =
∏

a′′ 6=a′

(A − a′′)

(a′ − a′′)
. (5.29)

Now let’s return to our doublet, spin-1/2, two-level system. Let us write the
z-component of angular momentum as

Jz =
1

2
h̄σz , σ′

z = ±1, (5.30)

where we now regard σz as a symbol, while following the above notation the
possible values of σz are denoted by a prime. The symbol σz is written in terms
of measurment symbols as

σz = +1|+ 1| + (−1)| − 1| = | + | − | − |. (5.31)

Where we have simplified the notation to label the state by the sign of σ′
z . On

the other hand,
1 = | + | + | − |. (5.32)

Add and subtract these:

| + | =
1 + σz

2
, | − | =

1 − σz

2
. (5.33)

Let us check that the required properties hold:

| + || − | =
1 − σ2

z

4
= 0, (5.34)

since σ2
z always has the value 1, while

| + || + | =

(

1 + σz

2

)2

=
1 + 2σz + σ2

z

4
=

1 + σz

2
= | + |, (5.35a)

| − || − | =

(

1 − σz

2

)2

=
1 − 2σz + σ2

z

4
=

1 − σz

2
= | − |. (5.35b)
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5.1 General measurement symbols

The algebra developed to this point is too special. Let’s consider measurements
in which atoms are selected in one state, and emitted in another state, that is,
where there is a change of state. Fig. 2.6 shows an example. There, a Stern-
Gerlach measurement which selects atom in a state m = +1/2 is followed by an
apparatus which changes all those selected atoms into the m = −1/2 state. A
subsequent Stern-Gerlach apparatus verifies that all the atoms in the selected
beam have m = −1/2. Let’s convince ourselves that such a change in state is
possible. We can imagine at least two ways of changing the m = +1/2 state to
the m = −1/2 state.

1. Apply a magnetic field perpendicular to the z-axis, the direction of the
magnetic moment selected by the first Stern-Gerlach apparatus. This will
cause the magnetic moment, or the spin, to precess around the direction of
the field, and that precession can be arranged so the precession is through
π or 180◦. Then Jz = +h̄/2 gets converted to Jz = −h̄/2.

2. Apply a magnetic field parallel to the z-axis, that is, parallel to the direc-
tion of the selected magnetic moment. Because the energy of the magnetic
dipole in the magnetic field is E = −µ ·H, the m = −1/2 and m = +1/2
states have different energies, and if γ > 0, the former has higher energy.
Now send in an appropriate electromagnetic wave to cause a transition
from m = +1/2 to m = −1/2, which could be done by feeding in electro-
magnetic energy at resonance,

Eem wave = Em=−1/2 − Em=+1/2. (5.36)

This technique is used in the standard of time, the cesium fountain clock.1

We now generalize, and consider a measurement of a property A. We select
atoms with A = a′ but emit them with A = a′′. The measurement symbol for
this is

|a′a′′|. (5.37)

(This symbol can be read in either order.) This generalizes what we had before.
When there is no change in state,

|a′a′| = |a′|. (5.38)

Suppose we follow one such measurement by another such,

|a′a′′||a′′a′′′| = |a′a′′′|, (5.39)

1Since 1967, the International System of Units (SI) has defined the second as the duration
of 9192631770 cycles of radiation corresponding to the transition between the two hyperfine
ground-state energy levels of the caesium-133 atom. The current clock is accurate to one
part in 10−16. For details, see http://www.nist.gov/pml/div688/grp50/primary-frequency-
standards.cfm
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which means (reading from left to right), the first experiment selects a′, but
emits in a′′, the second experiment selects a′′ but emits in a′′′. Since everything
emitted by the first measurement is accepted by the second measurement, the
net effect is to select a′ and to emit in a′′′. This equation generalizes

|a′||a′| = |a′|. (5.40)

On the other hand,

|a′a′′||a′′′, aiv| = 0 if a′′ 6= a′′′, (5.41)

because what is produced by the first stage cannot enter the second stage; the
second rejects what the first emits. This generalizes

|a′||a′′| = 0, a′ 6= a′′. (5.42)

We can put these two statements together by defining a δ-symbol:

δ(a′, a′′) =

{

a′ = a′′ : 1,
a′ 6= a′′ : 0.

(5.43)

Then, Eqs. (5.40) and (5.42) are subsumed in

|a′||a′′| = δ(a′, a′′)|a′|, (5.44)

and Eqs. (5.39) and (5.41) are combined in

|a′a′′||a′′′aiv| = δ(a′′, a′′′)|a′aiv|. (5.45)

Here’s a consistency check: Start from the special case

|a′a′||a′′a′′′| = δ(a′, a′′)|a′a′′′|, (5.46)

and use the construction of the unit symbol, the completely unselective mea-
surement,

1 =
∑

a′

|a′| =
∑

a′

|a′a′|, (5.47)

to see that

1|a′′a′′′| =
∑

a′

|a′a′||a′′a′′′| =
∑

a′

δ(a′, a′′)|a′a′′′| = |a′′a′′′|. (5.48)

Now, notice we have entered something new:

|a′a′′||a′′′aiv| = δ(a′′, a′′′)|a′aiv|, (5.49a)

|a′′′aiv||a′a′′| = δ(aiv, a′)|a′′′a′′|, (5.49b)

are not the same:
|a′a′′||a′′′aiv| 6= |a′′′aiv||a′a′′|. (5.50)
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Multiplication is not commutative. This is obvious from the physical meaning
of measurement symbols: If a′ 6= a′′,

|a′||a′a′′| = |a′a′′| (5.51)

signifies a measurement in which a′ is accepted, but a′′ is emitted, while

|a′a′′||a′| = 0 (5.52)

means that everything emited by the first measurement is rejected by the second.
Nothing comes out. The order of physical operations is important. Mathemati-
cally, this means that the ordering of multiplication of measurement symbols is
significant.

5.2 More about spin-1/2

Remember that we defined for spin 1/2

Jz =
1

2
h̄σz, (5.53)

where the possible values of σz , σ′
z = ±1. For this system, there are four possible

measurement symbols

|σ′
zσ

′′
z |, where σ′

z = ±1, σ′′
z = ±1, (5.54)

where the two values may be independently assumed. Recall in general that

A =
∑

a′

|a′|, (5.55)

so
σz = | + | − | − | = | + +| − | − −|. (5.56)

Note that σ2
z = 1; since σ′

z = ±1, the only possible value of σ2
z is 1. (This also

follows from
∏

a′(A − a′) = 0.) Check this property explicitly:

σ2
z = (|+| − |−|)(|+| − |−|) = |+||+| − |−||+|− |+||−|+ |−||−| = |+|+ |−| = 1.

(5.57)
There is nothing special about the z direction; we must be able to write

J =
1

2
h̄σ. (5.58)

What are σx, σy? They must have the properties

σ2
x = 1, σ2

y = 1, (5.59)

since nothing can be special about the z axis. Now we know from the general
properties of the measurement symbols that

| − +|| + −| = | − −| = | − |, (5.60a)

| + −|| − +| = | + +| = | + |, (5.60b)
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while
| − +|| − +| = 0 = | + −|| + −|. (5.60c)

Thus we have

(| − +| + | + −|)2 = | − +|| + −| + | + −|| − +| = | − | + | + | = 1, (5.61)

which is just the property σx is supposed to have, so we take

σx = | − +| + | + −|. (5.62)

We need an independent combination of measurement symbols, with the same
property, to give σy . Note that

(| − +| − | + −|)2 = −| − | − | + | = −1, (5.63)

since the same cross terms contribute, but with a minus sign, which means that

[i(| − +| − | + −|)]2 = 1, (5.64)

so we can adopt
σy = i| − +| − i| + −|. (5.65)

To summarize the four combinations of measurement symbols we have found:

σx = | − +| + | + −|, (5.66a)

σy = i| − +| − i| + −|, (5.66b)

σz = | + | − | − |, (5.66c)

1 = | + | + | − |. (5.66d)

The four symbols σx,y,z, 1 are here expressed as linear combinations of mea-
surement symbols. There is something remarkable about how this fits together:
There are three dimensions of space, hence 3 σ’s, and there are just the right
number of measurement symbols to express these.

Now, let’s work out the algebra of these σ’s:

σxσy = (| − +| + | + −|)(i| − +| − i| + −|) = i| + | − i| − | = iσz, (5.67a)

σyσx = (i| − +| − i| + −|)(| − +| + | + −|) = −i| + | + i| − | = −iσz,

(5.67b)

from which follows

σxσy = −σyσx, or σxσy + σyσx = 0. (5.68)

σx and σy do not commute; we say they anticommute. The remaining products
are

σyσz = (i| − +| − i| + −|)(| + +| − | − −|) = i| − +| + i| + −| = iσx,(5.69a)

σzσy = (| + +| − | − −|)(i| − +| − i| + −|) = −i| + −| − i| − +| = −iσx,

(5.69b)

σzσx = (| + +| − | − −|)(| − +| + | + −|) = | + −| − | − +| = iσy, (5.69c)

σxσz = (| − +| + | + −|)(| + +| − | − −|) = | − +| − | + −| = −iσy. (5.69d)
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In summary,

σxσy = iσz, σyσz = iσx, σzσx = iσy,

σyσx = −iσz, σzσy = −iσx, σxσz = −iσy. (5.70)

Note the cyclic pattern here. A compact notation can be invented for these. If
we replace the labels x, y, z by 1, 2, 3, we can write

i 6= j : σiσj = i

3
∑

k=1

ǫijkσk ≡ iǫijkσk, (5.71)

where ǫijk is the totally antisymmetric symbol:

ǫ123 = +1, ǫijk = −ǫjik = −ǫikj = −ǫkji = ǫjki = ǫkij , (5.72)

and we have adopted the (Einstein) summation convention for repeated indices.
Incorporating also the fact that

σ2
i = 1, i = 1, 2, 3, (5.73)

we have
σiσj = δij + iǫijkσk, (5.74)

where the Kronecker δ symbol is

δij =

{

1, i = j,
0, i 6= j.

(5.75)

Suppose we consider any two vectors

a = (a1, a2, a3), b = (b1, b2, b3). (5.76)

Then Eq. (5.74) implies

aibjσiσj = aibjδij + iǫijkaibjσk, (5.77)

or
(σ · a)(σ · b) = a · b + iσ · (a × b), (5.78)

because

ǫijkaibjσk =

∣

∣

∣

∣

∣

∣

a1 a2 a3

b1 b2 b3

σ1 σ2 σ3

∣

∣

∣

∣

∣

∣

= a · (b × σ) = σ · (a × b). (5.79)

5.3 Unitary transformation

If a = b = e, where e is a unit vector, e · e = 1, Eq. (5.78) means

(σ · e)2 = 1. (5.80)
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If we have three mutually orthogonal unit vectors, forming a right-handed set,

e
2
i = 1, ei × ej = ǫijkek, (5.81)

so for example e1 × e2 = e3, we have, for i 6= j,

(σ · ei)(σ · ej) = iσ · (ei × ej) = iǫijk(σ · ek) (5.82)

But these three unit vectors define a coordinate system; say the primed coordi-
nate system:

σ · ei = σi′ (σx′ , σy′ , σz′), (5.83)

so in any coordinate system

σ2
i′ , σi′σj′ = iǫijkσk′ , i 6= j (5.84)

The algebraic properties are independent of the coordinate system.
The two coordinate systems (x, y, z), (x′, y′, z′) differ by a rotation. We want

to see in more detail how the new σ’s, σx′ , σy′ , σz′ , are related to the original
σ’s, σx, σy, σz. To do this, we first prove a lemma,

cosφ + iσz sin φ = eiσzφ. (5.85)

The proof ot this depends on the definition of a function of an algebraic element,

f(A) =
∑

a′

f(a′)|a′|. (5.86)

Here

| + | =
1 + σz

2
, | − | =

1 − σz

2
, (5.87)

so

eiσzφ = eiφ 1 + σz

2
+ e−iφ 1 − σz

2
= cosφ + i sinφσz . (5.88)

Let’s also check that this exponential has the expected mulitiplication property.

eiφσz eiφ′σz = ei(φ+φ′)σz . (5.89)

Indeed, the left side of this equation is

(

eiφ| + | + e−iφ| − |
)

(

eiφ′

| + | + e−iφ′

| − |
)

= ei(φ+φ′)| + | = e−i(φ+φ′)| − |

= ei(φ+φ′)σz . (5.90)

This implies

e−iφσz =
(

e−iφσz
)−1

(5.91)

since
e−iφσz eiφσz = 1. (5.92)
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z, z′

y

x x′

y′

φ

φ

Figure 5.2: Two coordinate systems, (x, y, z), (x′, y′, z′), which are related by a
rotation about the z axis through an angle φ.

Let’s consider a rotation about the z axis, as shown in Fig. 5.2. So

σx′ = σx cosφ + σy sin φ, (5.93a)

σy′ = −σx sinφ + σy cosφ, (5.93b)

σz′ = σz . (5.93c)

We know already that

σ2
x′ = σ2

y′ = σ2
z′ = 1, σx′σy′ = iσz′ , etc. (5.94)

But how does this come about? Note that

σx′ = σx cosφ − iσzσx sin φ

= (cosφ − iσz sin φ)σx = e−iφσz σx, (5.95)

or

σx′ = σx cosφ + iσxσz sin φ

= σx(cosφ + iσz sin φ) = σxeiφσz . (5.96)

When we commute σx past a function of σz, the sign of σz changes, since σx

and σz anticommute:
σxσz = −σzσx. (5.97)

(Any function of σz is actually a linear function:

f(σz) = f(+)
1 + σz

2
+ f(−)

1 − σz

2
= a + bσz.) (5.98)

If we decompose the exponentials,

e−iφσz = e−i φ
2

σze−i φ
2

σz , (5.99a)

eiφσz = ei φ

2
σz ei φ

2
σz , (5.99b)

we can write

σx′ = e−iφσz σx = e−i φ

2
σz σxei φ

2
σz , (5.100)

= σxeiφσz = e−i φ
2

σz σxei φ
2

σz , (5.101)
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in each case commuting σx with one of the exponentials. Define

U = ei φ
2

σz ; (5.102)

it is an algebraic element corresponding to a rotation of the coordinate system
about the z axis through an angle φ. We have

σx′ = U−1σxU. (5.103)

It is also true that

σy′ = U−1σyU, (5.104a)

σz′ = U−1σzU. (5.104b)

Proof: the last is easy, since σz commmutes with itself:

U−1σzU = e−i φ
2

σz σze
i φ
2

σz

= σze
−i φ

2
σzei φ

2
σz = σz . (5.105)

Nontrivial is

U−1σyU = e−i φ
2

σz σyei φ
2

σz = σyeiφσz

= σy(cosφ + iσz sin φ) = σy cosφ − σx sin φ = σy′ , (5.106)

since σy, σz anticommute, and σyσz = iσx.
The discussion here has been restricted to spin 1/2, but we recognize here

Jz =
h̄

2
σz, (5.107)

so it is plausible (and true) that the symbol which describes (or produces)
rotations about the z axis through an angle φ for an arbitrary system is

U = eiφJz/h̄. (5.108)

Transformations of this type are guaranteed to preserve algebraic relations.
Thus, suppose we have elements of our algebra

X, Y, Z, W, where XY = Z, X + Y = W. (5.109)

Then if we define transformed elements by

X̄ = U−1XU, Ȳ = U−1Y U, Z̄ = U−1ZU, W̄ = U−1WU, (5.110)

then

X̄ + Ȳ = U−1XU + U−1Y U = U−1(X + Y )U = U−1WU = W̄ , (5.111a)

and
X̄Ȳ = U−1XUU−1Y U = U−1XY U = U−1ZU = Z̄, (5.111b)
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Figure 5.3: Rotation of the Cartesian coordinate system about the y axis
through an angle θ.

that is,
X̄Ȳ = Z̄, X̄ + Ȳ = W̄ , (5.112)

which is just the transform of Eq. (5.109). This property is completely indepen-
dent of what U is.

Therefore, because

σx′ = U−1σxU, σy′ = U−1σyU, σz′ = U−1σzU, (5.113)

we are guaranteed that σx′ , σy′ , σz′ satisfy the same algebra as σx, σy, σz . Such
transformations are called “unitary transformations,” and preserve algebraic
structure. Writing the transformation in this way separates the object being
rotated (σ) from the rotation of the coordinate system (represented by U). We
must be able to do this in general.

Let’s now do a rotation about the y axis, as shown in Fig. 5.3. Geometrically,

σx′ = σx cos θ − σz sin θ, (5.114a)

σy′ = σy , (5.114b)

σz′ = σx sin θ + σz cos θ. (5.114c)

We expect by analogy that the unitary transformation which does this is given
by

U = ei θ
2
σy , (5.115)

which represents a rotation about the y axis through the angle θ. This must be
so, since all directions are on the same footing. Does it work?

σx′ = U−1σxU = e−i θ
2

σyσxei θ
2
σy = σxeiθσy

= σx(cos θ + iσy sin θ) = σx cos θ − σz sin θ, (5.116a)

σy′ = U−1σyU = e−i θ
2

σyσyei θ
2
σy = σy , (5.116b)

σz′ = U−1σxU = e−i θ
2

σyσze
i θ
2

σy = σze
iθσy

= σz(cos θ + iσy sin θ) = σz cos θ + σx sin θ, (5.116c)
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since σy anticommutes with σx and σz , and

eiθσy = cos θ + iσy sin θ, (5.117)

which is proved just as the corresponding statement for σz . All that is essential
to the proof is (iσy)2 = −1.

Quite generally, a rotation about any axis can be constructed in this way.
Any rotation is equivalent to a rotation about a fixed axis. Consider a general
rotation, so that the z′ axis is determined by polar and azimuthal angles, θ and
φ:

σz′ = σx sin θ cosφ + σy sin θ sin φ + σz cos θ, (5.118)

as shown in Fig. 4.5. How can this be obtained by a unitary transformation?
Note that

σz′ = sin θe−i φ

2
σz σxei φ

2
σz + σz cos θ

= e−i φ

2
σz (σx sin θ + σz cos θ)ei φ

2
σz

= e−i φ

2
σz e−i θ

2
σyσze

i θ
2

σyei φ

2
σz ; (5.119)

in effect we undid the φ, θ rotations to bring σz′ back to the z axis. Let

U = ei θ
2

σy ei φ

2
σz . (5.120)

Then
U−1 = e−i φ

2
σz e−i θ

2
σy (5.121)

Note in U−1 the factors appear in reverse order. This is a general property with
algebraic elements: If X , Y have inverses X−1, Y −1, so

X−1X = 1, Y −1Y = 1, (5.122)

then the inverse of XY is (XY )−1 = Y −1X−1 because

(Y −1X−1)(XY ) = Y −1Y = 1. (5.123)

Thus we have proved
σz′ = U−1σzU, (5.124)

for a general rotation of the coordinate system. The rotation is effected in
stages: first a rotation about the y axis through an angle θ, then a rotation
about the z axis through an angle φ. We will see this more completely later on.
(See homework.)

To summarize: Independence of directions, or of the orientation of the coor-
dinate system, follows from the non-commutativity of the perpendicular com-
ponents of the angular momentum. The impossibility of measuring the different
components of the angular momentum is now faithfully represented. A small
change of the coordinate system does not imply a small change in the measured
values, which are for spin-1/2 always σ′

z′ = ±1.
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