
Chapter 4

More About Spin

4.1 Higher Spins

We have been analyzing the results of the Stern-Gerlach experiment on the
simplest possible atoms, those with spin 1/2. The next simplest situation occurs,
for example, with O2 molecules, where the beam of molecules from the oven gets
split into three beams. See Fig. 4.1. The beam that is deflected up we interpret
as having z-component of angular momentum Jz = +h̄, that deflected down
has Jz = −h̄, and the undeflected has Jz = 0. We see that h̄ is the universal
scale of angular momentum differences. (The experiment measures µz, but since
µz = γJz, it likewise determines Jz .)

What is J? The maximum values of Jz as our pictures suggest, which seem
to imply that when Jz takes on its maximal value, J is aligned with the z axis,
so that Jx = Jy = 0? No, this picture is incorrect. For

J2 = J2
x + J2

y + J2
z , (4.1)

and if this is averaged over all the atoms in the beam

J2 = 〈J2
x〉 + 〈J2

y 〉 + 〈J2
z 〉 = 3〈J2

z 〉, (4.2)

Figure 4.1: When an unpolartized beam of oxygen molecules enters a Stern-
Gerlach apparatus, it gets split into three beams, one undeflected, one deflected
up, and one deflected down.
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Jz = jh̄

Jz = (j − 1)h̄

Jz = −jh̄

Figure 4.2: The general Stern-Gerlach experiment on atoms or molecules of spin
j. The beam of unpolarized atoms is split into n+1 = 2j+1 beams of polarized
atoms.

since the value of J2 is fixed, and the distribution of spins is isotropic, so if we
meansured any component of J we would get the same result on the average.

For the doublet (Ag),

Jz = ±1

2
h̄, J2

z =
1

4
h̄2, (4.3)

so

J2 = 3〈J2
z 〉 =

3

4
h̄2 > J2

z , (4.4)

simply because J2
x = 1

4 h̄
2, J2

y = 1
4 h̄

2. The naive anticipation is incorrect because

〈Jx〉 = 0 does not imply 〈J2
x〉 = 0. (4.5)

We can measure Jz, but then we are unable to specify Jx, Jy—the angular
momentum precesses uncontrollably about the z axis—there is a kind of uncer-
tainty principle at work between the different components of J. Similarly for
the triplet (O2),

Jz = (1, 0,−1)h̄, (4.6)

and each value is equally probable. Thus

〈J2
z 〉 =

1

3

[

(h̄)2 + 02 + (−h̄)2
]

=
2

3
h̄2, (4.7)

and therefore
J2 = 3〈J2

z 〉 = 2h̄2 > (Jz max)
2 = h̄2. (4.8)

Again, we cannot think of J as pointing along the z axis, when Jz = h̄.
The general situation for the Stern-Gerlach experiment is illustrated in

Fig. 4.2. The beam of atoms is split into n + 1 subbeams. The one deflected
the most upward has the maximal value of Jz,

Jz max = jh̄, (4.9)

where j is called the angular momentum quantum number. What values can j
assume? Because

j − (−j) = 2j = n, (4.10)
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j can either be an integer or an integer plus one-half:

j =
1

2
n = 0,

1

2
, 1,

3

2
, 2, . . . . (4.11)

For the doublet, j = 1
2 (spin 1/2), for the triplet, j = 1 (spin 1). A spin 0 atom

will go through the apparatus without being deflected.
Let’s work out J2 in general, for a spin-j atom. It is still true that

J2 = 3〈J2
z 〉, (4.12)

where now

〈J2
z 〉 =

1

2j + 1

j
∑

m=−j

(mh̄)2, (4.13)

where m represents the possible (integer or integer plus 1/2) values Jz/h̄ can as-
sume; m is called the magnetic quantum number. We will show in the appendix
that

j
∑

m=−j

m2 =
1

3
(2j + 1)j(j + 1), (4.14)

so

〈J2
z 〉 =

1

3
j(j + 1)h̄2, (4.15)

or
J2 = j(j + 1)h̄2. (4.16)

This agrees with the special cases for j = 1/2 and j = 1 considered above. It is
still true that

J2 > J2
z max, because J2 = j(j + 1)h̄2, J2

z max = j2h̄2. (4.17)

In fact, when Jz = jh̄,

(J2
x + J2

y )Jz=jh̄

(Jz max)2
=

j

j2
=

1

j
, (4.18)

which equals 2 for j = 1/2, but goes to zero as j → ∞. The classical limit occurs
when j → ∞. Remember that the scale of angular momentum is set by h̄, a tiny
number for macroscopic physics, so macroscopic, classical, angular momenta
correspond to very large values of j. For macroscopic angular momentum, the
discreteness in Jz, J

2 becomes imperceptible. In the classical limit, indeed
Jz max occurs when J points along the z axis.

4.2 State vectors

For spin-1/2 atoms, we have calculated the probability of finding Jz = mh̄, m =
±1/2, given that the beam entering the Stern-Gerlach apparatus has Jz′ = m′h̄,
m′ = ±1/2:

p(m,m′) =

(

cos2 θ/2 sin2 θ/2
sin2 θ/2 cos2 θ/2

)

, (4.19)
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Jz = h̄/2

Jz = −h̄/2

Jz′ = m′h̄

preparing apparatus

analyzing apparatus

z

z′

Figure 4.3: A preparing magnet prepares a state in which Jz′ has a definite
value, and then an analyzing magnet measures Jz on those prepared atoms.
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Figure 4.4: Spherical angles representing the directions of the analyzing and
preparing magnets. Here θ, θ′ are the polar angles, the angles e1 and e2 make
with the z axis, while φ and φ′ are the azimuthal angles the projection of e1

and e2 in the x-y plane make with the x axis.

where θ is the angle between the two directions along which the component of
angular momentum was measured, z, z′. Two experiments are really involved—
the “preparing” experiment, which selected atoms with Jz′ = m′h̄, and the
“analyzing” experiment, which measured Jz on those atoms—See Fig. 4.3. We
would like to separate the effects of these two measurements.

It helps to adopt a general coordinate system, as shown in Fig. 4.4. Here
the figure shows the directions of the magnetic fields along the symmetry axis
in the two magnets: e1 is the direction of H in the analyzing magnet, while e2

is the direction of H in the preparing magnet; both are unit vectors. Let the
angle between the two directions be Θ,

e1 · e2 = cosΘ. (4.20)
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On the other hand, in terms of Cartesian components,

e1 · e2 = e1xe2x + e1ye2y + e1ze2z

= sin θ cosφ sin θ′ cosφ′ + sin θ sinφ sin θ′ sinφ′ + cos θ cos θ′,(4.21)

so
cosΘ = cos θ cos θ′ + sin θ sin θ′ cos(φ− φ′). (4.22)

Now

p(+1/2,+1/2) = cos2 Θ/2 =
1 + cosΘ

2
, (4.23a)

p(−1/2,+1/2) = sin2 Θ/2 =
1 − cosΘ

2
. (4.23b)

(4.23c)

It is convenient to work in terms of half-angles:

cosΘ =

(

cos2
θ

2
− sin2 θ

2

)(

cos2
θ′

2
− sin2 θ

′

2

)

+ 2 sin
θ

2
cos

θ

2
2 sin

θ′

2
cos

θ′

2
cos(φ− φ′), (4.24a)

while

1 =

(

cos2
θ

2
+ sin2 θ

2

)(

cos2
θ′

2
+ sin2 θ

′

2

)

, (4.24b)

so

1 + cosΘ

2
= cos2

θ

2
cos2

θ′

2
+ sin2 θ

2
sin2 θ

′

2

+ 2 cos
θ

2
cos

θ′

2
sin

θ

2
sin

θ′

2
cos(φ− φ′). (4.25)

If φ− φ′ = 0, Eq. (4.25) is a square, of a product of two-component vectors:

1 + cosΘ

2
=

(

cos
θ

2
cos

θ′

2
+ sin

θ

2
sin

θ′

2

)2

=

(

(

cos
θ

2
, sin

θ

2

)

(

cos θ′

2

sin θ′

2

))2

, (4.26)

where usual matrix row on column multiplication is understood. The first vector
refers to the second experiment, the second to the first experiment. (As usual,
we are reading formulas right to left.)

If φ− φ′ = π/2, we get

1 + cosΘ

2
=

(

cos
θ

2
cos

θ′

2

)2

+

(

sin
θ

2
sin

θ′

2

)2

=

∣

∣

∣

∣

cos
θ

2
cos

θ′

2
+ i sin

θ

2
sin

θ′

2

∣

∣

∣

∣

2

. (4.27)
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Here, we see the appearance of the absolute value of a complex number, written
in term of the imaginary unit i =

√
−1. We see here a hint that the mathemat-

ical structure of quantum mechanics requires the use of complex numbers (in
classical physics, complex numbers are only a convenience).

Because for complex numbers a and b

|a+ b|2 = (a+ b)∗(a+ b) = |a|2 + |b|2 + 2Rea∗b, (4.28)

and
Re e−i(φ−φ′) = cos(φ − φ′).

∣

∣

∣
e−i(φ−φ′)

∣

∣

∣
= 1, (4.29)

we have in general

1 + cosΘ

2
=

∣

∣

∣

∣

cos
θ

2
cos

θ′

2
+ sin

θ

2
sin

θ′

2
e−i(φ−φ′)

∣

∣

∣

∣

2

. (4.30)

Thus the probability is the absolute square of the product of two vectors:

p

(

1

2
,
1

2

)

=

∣

∣

∣

∣

∣

(

cos
θ

2
, sin

θ

2
eiφ

)∗
(

cos θ′

2

sin θ′

2 e
iφ′

)∣

∣

∣

∣

∣

2

. (4.31)

The two measurements are represented by vectors, which are here two compo-
nent objects. The structure of each vector is the same, except that the first
factor appears as

(

cos θ
2

sin θ
2e

iφ

)†

=

(

cos
θ

2
, sin

θ

2
e−iφ

)

, (4.32)

where the † (adjoint symbol) means transposed, complex conjugated. The prob-
ability of going from one configuration, defined by the result of a measurement,
to a second configuration, defined by the result of a second measurement, is
obtained by complex multiplication of the vectors describing these two configu-
rations, and taking the absolute square of the result.

If this is a consistent picture, this “factorization” must be possible for the
other probability here:

p

(

−1

2
,
1

2

)

= sin2 Θ

2
=

1 − cosΘ

2

= cos2
θ

2
sin2 θ

′

2
+ sin2 θ

2
cos2

θ′

2
− 2 cos

θ

2
sin

θ′

2
sin

θ

2
cos

θ′

2
cos(φ − φ′)

=

∣

∣

∣

∣

− sin
θ

2
cos

θ′

2
+ cos

θ

2
sin

θ′

2
e−i(φ−φ′)

∣

∣

∣

∣

2

, (4.33)

so this probability is also the absolute square of something. Can the quantity
which is squared be factored? To do so, we note that p(1/2, 1/2) is the prob-
ability of a transition from a state from m′ = 1/2 along the z′ axis (we call
it a state because we know everything we can about it) to the state m = 1/2
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along the z axis, while p(−1/2, 1/2) is the probability of a transition from a
state from m′ = 1/2 along the z′ axis to the state m = −1/2 along the z axis,
These two situations have the same initial state in common. To see this in the
mathematical description, we write

p

(

−1

2
,
1

2

)

=

∣

∣

∣

∣

− sin
θ

2
eiφ cos

θ′

2
+ cos

θ

2
sin

θ′

2
eiφ′

∣

∣

∣

∣

2

=

∣

∣

∣

∣

∣

(

− sin
θ

2
e−iφ, cos

θ

2

)∗
(

cos θ′

2

sin θ′

2 e
iφ′

)∣

∣

∣

∣

∣

2

. (4.34)

The second factor, the same as before, represents the first measurement, which
selects m′ = 1/2. The first factor represents the final measurement, which
selects m = −1/2. The two vectors appearing in these probabilities are

ψm=1/2(θ, φ) =

(

cos θ
2

sin θ
2e

iφ

)

, ψm=−1/2(θ, φ) =

(

− sin θ
2e

−iφ

cos θ
2

)

, (4.35)

and the probability in all cases is

p(m,m′) =
∣

∣ψm(θ, φ)†ψm′(θ′, φ′)
∣

∣

2
. (4.36)

In general, physical systems are represented by vectors in some space, a
space which depends on how many options there are. The reason these vectors
have only two components is that they represent systems with only two possi-
ble states, Jz = ±h̄/2. (Thus, to represent a system with 27 possible states,
we would need a 27 component vector.) We see an intimation of an abstract
geometry. A mathematics will be developed as a symbolic representation of
experiments.

Before commencing on that, let us say a few more words about the vectors
here, and their physical interpretation.

If we set θ = 0, that is, line up e1 with the z axis, we get

ψ1/2 =

(

1
0

)

, ψ−1/2 =

(

0
1

)

(4.37)

ψ1/2 represents a state in which Jz = 1
2 h̄, while ψ−1/2 represents a state in which

Jz = − 1
2 h̄. Then, if we first select a state with Jz′ = 1

2 h̄ and then measure Jz ,
where z′ is oriented relative to z as shown in Fig. 4.5, the probability of finding
Jz = 1

2 h̄ is

p

(

1

2
,
1

2

)

=

∣

∣

∣

∣

(1, 0)∗
(

cos θ
2

sin θ
2e

iφ

)∣

∣

∣

∣

2

=

∣

∣

∣

∣

cos
θ

2

∣

∣

∣

∣

2

= cos2
θ

2
, (4.38)

which is correct. In general, if Jz′ = m′h̄, Jz = mh̄,

p(m,m′) = |ψm′(m)|2 , (4.39)
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Figure 4.5: Orientation of z′ relative to a coordinate system based on the z axis.

where the argument of the wavefunction is the component of the 2-vector. Using
the wavefunctions (4.35), we reproduce the array of probabilities (4.19),

p(m,m′) =

(

cos2 θ/2 sin2 θ/2
sin2 θ/2 cos2 θ/2

)

. (4.40)

The quantities ψ are called probability amplitudes or wavefunctions.
You take the absolute square of a probability amplitude to get a probability.

The wave referred to is not classical, but one which mathematically gives the
probability of finding the particle in a certain state.

We’ve been walking a tightrope between the classical and quantum worlds.
Now we must begin again, and construct the quantum mechanics.

4.3 Appendix: Evaluation of
∑j
m=−j m

2

A general procedure, which also gives sums of other powers of m, is as follows.
Consider

Sj =

j
∑

m=−j

eimφ. (4.41)

Multiply this by eiφ:

eiφSj =

j
∑

m=−j

ei(m+1)φ =

j
∑

m=−j

eimφ + ei(j+1)φ − e−ijφ. (4.42)

or

Sj

(

eiφ − 1
)

= ei(j+1)φ − e−ijφ

= eiφ/2
(

ei(j+1/2)φ − e−i(j+1/2)φ
)

. (4.43)

That is,

Sj =
ei(j+1/2)φ − e−i(j+1/2)φ

eiφ/2 − e−iφ/2
=

sin(j + 1/2)φ

sinφ/2
. (4.44)
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From this general result, we can find the desired sum, by expanding in powers
of φ:

Sj =

j
∑

m=−j

(

1 + imφ− m2φ2

2
+ . . .

)

=
(j + 1/2)φ− 1

6 (j + 1/2)3φ3 + . . .

φ/2 − 1
6 (φ/2)3 + . . .

= 2j + 1 + φ2

[

−1

3
(j + 1/2)3 +

1

12
(j + 1/2)

]

+ . . .

= 2j + 1 − 1

3
φ2(j + 1/2)j(j + 1) + . . . . (4.45)

Thus we conclude:

j
∑

m=−j

1 = 2j + 1,

j
∑

m=−j

m = 0,

j
∑

m=−j

m2 =
1

3
(2j + 1)j(j + 1). (4.46)


