
Chapter 3

Uncertainty principle

Now it is Amperé’s hypotheis that the source of all magnetic fields is the motion
of charges. In particular, magnetic dipole moments arise from the circulation
of charge. Thus, there must be a relation between a mechanical property of
the atom, referring to that circulation, and the magnetic dipole moment of the
atom. That mechanical property is the angular momentum (or spin) of the
atom, J. We can anticipate that µ is proportional to J, or

µ = γJ, (3.1)

where the constant of proportionality γ is called the gyromagnetic ratio. (An
example of this was given in Problem 3, Assignment 1.)

The startling conclusion of the Stern-Gerlach experiment that for Ag atoms
µz takes on only 2 values, means that Jz take on only two discrete values as
well, for Ag atoms:

µz = γJz ⇒ Jz = ±|Jz|. (3.2)

The magnitude of the two values must be the same, since there is no fundamental
difference between up and down. The result of the Stern-Gerlach experiment
means that there is a natural unit of angular momentum, here given by the
difference of the two physical values of the spin:

(Jz)+ − (Jz)− = h̄ =
h

2π
, (3.3)

where Planck’s constant (1900), also called the quantum of action, has the
experimental value

h̄ = 1.0545717× 10−27 erg sec. (3.4)

(Action is a quantity which has dimensions of [energy×time] = [momentum×
distance], that is, it has units g-cm2/s. Angular momentum has the same di-
mensions.) (Jz)+−(Jz)− is the same for all atoms for which Jz can take on only
two values. This reflects the universality of angular momentum, the properties
of which make fundamental reference to three-dimensional space, as we will see
later.
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Figure 3.1: If γ is positive, the torque exerted on a magnetic dipole by a fixed
magnetic field H causes the angular momentum J to precess in a clockwise
(negative) sense around the direction of H, keeping a constant angle with respect
to H.

Since, for a “two-level” atom

(Jz)+ = −(Jz)−, (3.5)

we see that

(Jz)± = ±
1

2
h̄. (3.6)

We therefore call this a spin-1/2 atom.
How big is a typical gryromagnetic ration?

γ =
(µz)+
(Jz)+

∼
10−20erg/G

10−27erg s
= 107 G−1s−1. (3.7)

Since this is a large number, it means that it takes a very weak field to make an
atomic dipole precess. Consider the torque exerted on an atom by an applied
magnetic field,

τ = µ × H = γJ× H =
dJ

dt
, (3.8)

since, according to Newton, the torque gives the time rate of change of the
angular momentum. This equation implies that J precesses around a constant
magnetic field: J sweeps around H, at a constant rate, keeping a fixed angle
with respect to H, as sketched in Fig. 3.1.

Adopt a coordinate system in which H lies along the z-axis. Then, our
equation of motion reads

dJz

dt
= 0,

dJx

dt
= γJyH,

dJy

dt
= −γJxH. (3.9)

Convert this system of first order equations into a single second-order one:

d2Jx

dt2
= γ

dJy

dt
H = −γ2H2Jx. (3.10)

If at t = 0, Jy = 0, the solution is

Jx = A cosωt, Jy = −A sin ωt, (3.11)
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Figure 3.2: An atom with dipole moment µ polarized at an angle θ with respect
to the field of a Stern-Gerlach apparatus.

where the precession frequency is

ω = γH. (3.12)

If γ > 0, the precession is clockwise, that is, in the negative sense. The angle
through which the dipole precesses in a time t is φ = ωt = γHt. If the atom
has speed v and passes through a magnet of length ℓ, t = ℓ/v, and

φ = γH
ℓ

v
. (3.13)

How large a field is required to induce a precession through one radian = 57◦?
Take ℓ = 1 cm, v ∼ 104 cm/s, γ ∼ 107; then it would take a field of only
h ∼ 10−3 G, which is very weak indeed, considering that the earth’s field is ∼ 1
G.

We are trying to learn how to construct a new mechanics, by exploiting the
paradoxes which emerge when classical mechanics is applied to atomic physics.
We’ll see one such paradox by considering the repeated Stern-Gerlach experi-
ment in another way.

Supose we have selected atoms in a first measurement which have a definite
orientation of the magnetic moment. Send these atoms into a second Stern-
Gerlach apparatus. In the second apparatus, H is not parallel to µ, so µ will
precess about H, as sketched in Fig. 3.2. Suppose that we choose matters so
that the precession is through a multiple of 2π; then when the atom leaves the
magnetic field of the second apparatus it will have the same orientation as when
it entered the field. Now send this beam of atoms through a third apparatus,
oriented in the same direction as the dipoles. All the atoms should be deflected
“up” relative to that magnet.

Is this really what happens? No! In fact, we already know how to figure out
what happens. The second apparatus splits the beam into two, with probability
of deflecting up equal to cos2 θ/2 and probability of deflecting down equal to
sin2 θ/2. Now keep these two beams together and inject it into the third appa-
ratus. The third apparatus splits each beam into two again. The probability
of the atoms coming out of the third apparatus with the orientation they had
upon entering the second apparatus is

p32(+, +) = p3(+, +)p2(+, +) + p3(+,−)p2(−, +)
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Figure 3.3: Atomic beam emerging from the furnace, collimator arrangement.
Note that there is a spread in the z position of the atoms, δz.
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We cannot predict the outcome for a single atom; some of the atoms are deflected
“down” by the second apparatus. Of course, if the second apparatus were not
present, the third apparatus would deflect all atoms “up.” An intermediate
measurement has changed the outcome!

What do we learn from this failure of the classical analysis? We assumed
we could precisely control how the dipole precesses. We see this is not true
provided the Stern-Gerlach experiment acts as we assumed to split the beam.
Now, note that we connot control the position of the beam exactly, as shown
in the sketch of the atoms leaving the furnace, Fig. 3.3. There is a spread in
the z position of the beam, δz. The defining aperture cannot be of zero size,
otherwise no beam will get through. But recall that Hz(z) inside the Stern-
Gerlach apparatus depends on position, so the different atoms in the beam will
experience slightly different fields, depending on their z position:

δHz =
∂Hz

∂z
δz. (3.15)

This means that the different atoms will precess by different amounts:

δφ = γ
∂Hz

∂z
δz

ℓ

v
. (3.16)

Also, the atoms are not moving exactly along the same line, so they will have a
small spread in the z-component of momentum, δpz.

To perform the Stern-Gerlach experiment, the transfer of momentum due to
the inhomogeneity of the field must be much larger than this, at least

(∆pz)+ − (∆pz)− > δpz, (3.17)

where (∆pz)± is the momentum acquired by the upward- and downward-deflected
beams respectively, in the Stern-Gerlach apparatus due to the inhomogeneous
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magnetic field. Since this momentum is [(2.17)]

∆pz = µz

∂Hx

∂z

ℓ

v
, (3.18)

and
µz = γJz, (Jz)+ − (Jz)− = h̄, (3.19)

we have

(∆pz)+ − (∆pz)− = γ
∂Hz

∂z

ℓ

v
h̄. (3.20)

Comparing this with the spread in precession angles, we see

h̄δφ = [(∆pz)+ − (∆pz)−] δz > δpzδz (3.21)

for the Stern-Gerlach experiment to work. Now, classically δpzδz could be as
small as you please. But we know δφ cannot be arbitrarily small, in fact, it
must be that δφ ∼ 1. This suggests that

δpz δz >∼ h̄. (3.22)

This is the famous (Heisenberg) uncertainty relation. We cannot perform mea-
surement of z, pz together with arbitrary precision.

This all comes back to the process of defining a beam by a slit. If δθ is the
angular spread of the beam emerging from the collimating slit,

δpz = p δθ, (3.23)

if the particles all emerge from the oven with momentum p. So the uncertainty
relation reads

δz δθ >∼
h̄

p
. (3.24)

The smaller the slit (the smaller δz) the larger the divergence angle (δθ). This
is reminiscent of the diffraction phenomena occuring with waves. With a wave
of wavelength λ impinging on a slit of width δz, the diffraction angle is

δθ ∼
λ̄

δz
, λ̄ =

λ

2π
. (3.25)

So we see that particles, to some extent, act like waves. The “wavelength” of
the particles is

λ̄ =
h̄

p
, λ =

h

p
. (3.26)

This is the de Broglie wavelength.
Classically, the concepts of particles and waves are at the extremes—the

epitome of localized and distributed objects. In the atomic world we must
transcend both the particle and wave pictures.

From the uncertainty principle we can now offer a hueristic explanation for
the stability of atoms. Consider a hydrogen atom, which consists of an electron,
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with charge −e and a very heavy nucleus, of charge +e. If the mass of the
electron is m, and the motion of the nucleus is neglected, the energy of the
atom is

E =
p2

2m
−

e2

r
. (3.27)

If the classical idea that the electron radiates its energy away were true, the
electron would fall in toward the nucleus, and the energy would become more
and more negative. (Recall that ignoring radiation, the virial theorem says
E = V̄ /2.) But in real atoms, the energy is bounded from below. The reason
for this is the uncertainty relation. It is not too much of a stretch of the
imagination to suppose for the radial components,

δr δpr
>∼ h̄, (3.28)

or for typical atomic values

pr ∼
h̄

r
. (3.29)

Then the energy is roughly

E ∼
1

2m

(

h̄

r

)2

−
e2

r
, (3.30)

and for small enough r, the kinetic energy dominates as shown in Fig. 3.4. What
is the minimum energy, Emin? It is obtained by differentiating E with respect
to r:

0 =
∂E

∂r
= −

h̄2

mr3
+

e2

r2
, (3.31)

which give the minimum radius r = h̄2/me2, or the minimum energy

Emin = −
1

2

me4

h̄2
. (3.32)

This turns out to be nearly exact for the ground state of the H atom.
There is another simple, but misleading, picture of atoms, in terms of de

Broglie waves. When the electron moves in a circular orbit about the nucleus,
there is a wave associated with it. For these pictures to be compatible, there
must be an integral number of wavelengths in one circuit, otherwise the waves
will destructively interfere. Thus

2πr = nλ, n = 1, 2, 3, . . . , (3.33)

or

r =
nλ

2π
= nλ̄ = n

h̄

p
, (3.34)

or

rp = nh̄. (3.35)
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Figure 3.4: The energy estimate given by Eq. (3.30), showing that the energy of
an electron in an atom is bounded from below. In this graph, the units adopted
are m = h̄ = e = 1, which are sometimes called atomic units.

Since rp is the orbital angular momentum, this says angular momentum comes
in units of h̄, which is consistent with what we learned from the Stern-Gerlach
experiment. (This justifies saying λ = h/p exactly.)

Now calculate the energy:

E =
p2

2m
−

e2

r
=

1

2m

n2h̄2

r2
−

e2

r
. (3.36)

This generalizes the picture seen in Fig. 3.4. The condition for equilibrium is
E = Emin, where Emin is determined from

0 =
∂E

∂r
= −

n2h̄2

mr3
+

e2

r2
, (3.37)

which has solution

r =
n2h̄2

me2
, (3.38)

so we see the virial theorem result again,

Eequil = −
1

2

e2

r
= −

me4

2n2h̄2
, n = 1, 2, 3, . . . . (3.39)

This is Bohr’s famous formula (1913). He assumed that the angular momentum
was an integral multiple of h̄. Here, we’ve advanced beyond Bohr by introducing
the wave picture.
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Figure 3.5: A accelerating voltage Va accelerated electrons through a chamber
containing hydrogen gas. The electrons pass through a grid, following which
they experience a small retarding voltage Vr. The current passing through the
chamber is measured as a function of accelerating voltage.

According to this result, the H atom assumes only these discrete energy
values, these energy levels, and no others. Direct evidence for this picture was
provided by Franck and Hertz in 1914. (They were aware of Bohr’s work, but
uninfluenced by it.) They accelerated electrons through an electric field in the
presence of H gas, as shown in Fig. 3.5. Because of the hydrogen gas, electrons
undergo collisions with the gas and lose energy. If the electron does not have
enough kinetic energy to overcome the retarding voltage, it will not reach the
anode. As Va increase, the current increases, as more electrons have sufficient
energy. But then at a certain critical energy, the current suddenly drops. Why?
Because the electrons now have enough energy to excite the gas atoms to the
n = 2 level. The current increases again for larger Va, but at a still higher energy,
there is again a sudden drop in current, when the electrons have sufficient energy
to excite the atoms to the n = 3 level. See Fig. 3.6 for a sketch of the result.
In order to excite atoms from the n = 1 to the n = 2 level, the energy of the
electron had to be at least

Eel = E2 − E1 =

(

1

4
− 1

)

E1 =
3

4
(−E1), (3.40)

which is a positive quantity since E1 is negative. Finally, there is enough energy
to drive the electron out of the atom, to ionize it. Then the electrons knocked
out of the atoms give a greatly increased current. This ionization energy is

Eion = 0 − E1 =
me4

2h̄2
. (3.41)

This provides a direct experimental method of measuring h̄. (The treatment
is approximate, since the nuclear motion is ignored—see homework.) Measure-
ments give for the ionization energy of H the value Eion = 13.61 eV. Here we
have introduced the convenient energy unit, the electron volt, abbreviated eV,
which is the energy acquired by an electron accelerated through a potential of
1 V. Since from deflection and oil-drop experiments we knew that the mass of
the electron is

m = 9.10938215(45)× 10−31 kg, (3.42)
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Figure 3.6: The current flowing through the Franck-Hertz chamber as a func-
tion of the accelerating voltage. Sharp dips occur at certain critical voltages,
corresponding to the energies required to excite the atoms in the gas to higher
energy levels.
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which is most conveniently given in terms of the equivalent rest energy,

mc2 = 0.510998910(13)MeV. (3.43)

Here the speed of light is defined as

c = 299792458 m/s (3.44)

exactly. The electronic charge is

e = 1.602176487(40)× 10−19 C = 4.80320427(12)× 10−10 esu. (3.45)

Since the above formula is given in Gaussian units (there are factors of 4πǫ0 in
SI), we have

h̄2 =
0.5110× 106 eV

2 × 13.61 eV

(4.803 × 10−10 esu)4

(2.998 × 1010 cm/s)2
, (3.46)

and taking the square root,

h̄ = 1.054 × 10−27 erg s, (3.47)

to be compared to the best current value

h̄ = 1.054571628(53)× 10−34 J s. (3.48)

(The numbers are the current best values with the uncertainty in the last digits
indicated.)

The Franck-Hertz experiment directly demonstrates the reality of the dis-
creteness of the energy levels in atoms. Yet it is much more precise to determine
these levels by measuring the energy released as light when the atom returns to
the ground, n = 1, state.

This picture not only gives the energies, but the atomic distance scale: the
radius of the nth Bohr orbit is

r = n2a0, (3.49)

where a0 is the Bohr radius, the radius of the first Bohr orbit,

a0 =
h̄2

me2
= 5.2917720859(36)× 10−11 m. (3.50)

The 10−8 cm scale of atoms was known in the 19th century.
It is important to note that what we have done here, although it leads

to correct results, is still not a consistent theory. Quantum mechanics lies
ahead. But a kernel of truth is here, although what Bohr did was a mass of
contradictions.


