
Chapter 2

The Stern-Gerlach

Experiment

Let us now talk about a particular property of an atom, called its magnetic

dipole moment. It is simplest to first recall what an electric dipole moment is.
Consider an electrically neutral system consisting of two separated charges,

one of charge +e at r+ and one of charge −e at position r−. Immerse this
system in an external electric field

E = −∇φ, (2.1)

where φ the electrostatic potential. The energy of this system in the field is

E = eφ(r+) − eφ(r−) ≈ e(r+ − r−) · ∇φ(r), (2.2)

where r is some representative point in the atom, if the atom is very small
compared to the distance over which E varies. Here

∇φ = gradientφ =

(

∂φ

∂x
,
∂φ

∂y
,
∂φ

∂z

)

. (2.3)

We define d = e(r+ − r−) as the electric dipole moment, so

E = −d · E. (2.4)

What is the force that E exerts on the atom?

F = eE(r+) − eE(r−) ≈ e(r+ − r−) · ∇E(r)

= (d · ∇)E(r) = −(d · ∇)∇φ(r)

= −∇(d · ∇)φ(r) = ∇(d ·E) = −∇E . (2.5)

Note here that d, the electric dipole moment, is a property of the atom, inde-
pendent of where the atom is.
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In addition, the electric field exerts a torque on the atom. About the center
of mass of the atom, this is

τ =
∑

i

ri × Fi =
1

2
(r+ − r−) × eE(r+) −

1

2
(r+ − r−) × (−e)E(r−)

= e(r+ − r−) × E(r), (2.6)

in terms of the average electric field in the atom,

E(r) =
1

2
[E(r+) + E(r−)] . (2.7)

Thus, the torque on the atom is

τ = d × E(r). (2.8)

Torque is also derivable from the energy, by considering how the energy
changes under a rotation of the dipole:

E = −d · E = −Ed cos θ. (2.9)

where θ is the angle between d and E. Then the torque on the dipole is

τ = −
∂

∂θ
E =

∂

∂θ
Ed cos θ = −Ed sin θ. (2.10)

The negative sign means that the torque acts in such a direction as to decrease
θ.

This was all by way of a prologue. What we really want to discuss are
magnetic dipoles. But we can proceed by analogy:

• Electric dipoles and electric fields are described by d and E.

• Magnetic dipoles and magnetic fields are described by µ and H.

• So to transcribe results for electric fields and dipoles to magnetic fields
and dipoles we simply make the replacement:

d → µ, E → H. (2.11)

So the corresponding results for a magnetic dipole in a magnetic field is

E = −µ ·H, (2.12a)

F = (µ · ∇)H = ∇(µ ·H), (2.12b)

τ = µ × H. (2.12c)

How does one measure the magnetic moment of an individual atom? By
using a beam of atoms. In an atomic beam, one can do repeated measurements
all at once, but the atoms are widely enough separated that we can ignore
the interactions between them. The experimental apparatus is schematically as
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Figure 2.1: Sketch of a Stern-Gerlach experiment. Atoms are heated in the
furnace, exit through a small hole, and collimated by a slit in an otherwise
opaque screen. The atomic beam then enters an inhomogeneous magnetic field,
where the atoms are deflected because of the interaction between the dipole
moment of the atoms and the magnetic field.

z•

Figure 2.2: Sketch of the end-on view of the magnet. The dot represents the
position of the beam traveling down the axis of the magnet.

shown in Fig. 2.1. Because of the knife edge of the upper pole piece, the magnetic
field gets stronger as that knife edge is approached. Because the atoms have
magnetic dipole moments, and the field is inhomogeneous, a force is exerted on
the atoms when they enter the region between the pole pieces:

F = ∇(µ ·H). (2.13)

The beam is arranged so that it goes down the central axis of the apparatus,
and it therefore only sees a z component of the field, which depends only on
z, Hz(z), where z is the symmetry direction of the magnet: See Fig. 2.2. Hz

increases as z increases. Because of the symmetry, the force on the atom has
only a z component,

Fz =
∂

∂z
µzHz = µz

∂Hz

∂z
. (2.14)

We know ∂Hz/∂z by knowing how the magnet is constructed, what the current
through its coils are, etc., and we measure Fz, as now described. This enables
us to perform a determination of µz.

Fz is measured from the deflection of the atoms in the beam. The change
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in the momentum is given by Newton’s law,

dpz

dt
= µz

∂Hz

∂z
. (2.15)

Initially, the atom has no momentum in the z direction. Suppose ∂Hz/∂z > 0;
then if µz > 0 the atom is deflected up, and if µz < 0 it is deflected down. Since
the deflection is small, ∂Hz/∂z is nearly constant along the trajectory of the
atom. If the length of the magnet is ℓ, the time during which the atom is inside
the magnet is

∆t =
ℓ

v
, (2.16)

if the speed of the atoms in the beam is v, which hardly changes. So the net
momentum acquired in the z direction is

pz = µz

∂Hz

∂z
∆t = µz

∂Hz

∂z

ℓ

v
. (2.17)

The beam is deflected upward or downward by an angle

θ =
pz

p
=

pz

mv
, (2.18)

where m is the mass of the atom, or

θ = µz

∂Hz

∂z

ℓ

mv2
. (2.19)

Take some typical numbers: 1

2
mv2 ∼ kT , where T is the temperature of the

furnace, say 103 K. The magnetic moment is something like µ ∼ 10−20 erg/G,
the field gradient might be ∂Hz/∂z ∼ 104 G/cm, and the length ℓ ∼ 10 cm.
This gives an estimate

θ ∼
10−20 × 104 × 10

10−16 × 103
= 10−2 (2.20)

radians, or about 1/2◦. That means about a 1 cm deflection over a distance of
1 m, which is easily observable.

We would expect that µz = µ cos θ, where now cos θ is the direction between
the direction of the magnetic field, the z axis, and the direction of the dipole,
ranges continuously in the beam from −µ to +µ, since atoms emitted from the
furnace are randomly polarized. This would imply a continuous distribution of
deflections, as sketched in Fig. 2.3. But when the experiment was performed
by Stern and Gerlach in 1921, using silver (Ag) atoms, they found discrete
rather than continuous deflections. As shown in Fig. 2.4, either the atoms were
deflected up by a certain amount, or deflected down by the same amount, with
nothing in between. It is as though µz = ±µ only. This is an abrupt break with
classical physics.

Of course, there is nothing special about up and down; if the apparatus lay
in a horizontal plane we would get deflection left and right.
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Figure 2.3: The expected distribution of atoms deflected by the Stern-Gerlach
measurement

Figure 2.4: The actual distribution of atoms deflected by the Stern-Gerlach
measurement

Figure 2.5: A first Stern-Gerlach experiment selects atoms with µz = +µ, and
blocks those atoms deflected down, with µ = −µ. A second apparatus again
measures µz for that selected beam. All the atoms emerging from the second
apparatus are deflected up.
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⊗

Figure 2.6: Now the atoms emerging from the first Stern-Gerlach apparatus
are rotated 180◦ about the beam axis, so that they enter the second apparatus
with µz = −µ. The symbol ⊗ represents the magnetic field apparatus that
rotates the dipole moments of the atoms emerging from the first Stern-Gerlach
apparatus by 180◦ before they enter the second Stern-Gerlach apparatus. All
the atoms emerging from the second apparatus are deflected down.

Suppose we did a repeated measurement, where the beam of those atoms
which were deflected up were sent through an second Stern-Gerlach apparatus,
which also measure µz, as shown in Fig. 2.5. The second apparatus deflects all
the atoms with µz = +µ upward, by the same amount.

If the second apparatus (the “analyzing magnet”) were rotated through an
angle π = 180◦ about the beam axis, all the atoms entering the analyzing
magnet would be deflected down by it. In practice, one doesn’t have to rotate
the magnet, but one can rotate the orientation of the dipoles by applying a
torque on them with an additional magnetic field. The second deflection above
is equivalent to the deflection of downward polarized dipoles deflected downward
by an upwardly oriented apparatus, as sketched in Fig. 2.6.

What if the analyzing magnet is rotated about the beam axis by an angle
θ, so that the atoms entering that apparatus have an orientation misaligned
the the magnet axis, as seen in Fig. 2.7. In this case, atoms will be deflected
both “up” and “down”, where the directions refer to the symmetry axis of the
analyzing magnet. We know that if θ = 0, all atoms will be deflected up, and
if θ = π all atoms will be deflected down. θ = π/2 = 90◦ is a symmetrical
situation; equal numbers of atoms will be deflected up and down. What does
an individual atom do? It is either deflected up or down, and certainly it does
not split in two. We cannot predict what it will do.

There is an analogy here with the throwing of a die. We cannot predict
an individual outcome, but we can say that the probability of a particular face
appearing is 1/6. But with a die, in principle, we could predict the outcome, if
we knew the initial conditions of throwing the die well enough. This is not the
case with atoms. We cannot get beyond probabilities. We cannot get further
information to tell us what a particular atom will do. The deterministic aspect
of mechanics is lost. Individual events are not predictable; we can only predict
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Figure 2.7: Now the atoms emerging from the first Stern-Gerlach apparatus are
rotated by an angle of θ about the beam axis, relative to the axis of the second
analyzing magnet. This is an end-on view of the second apparatus, showing
the atoms entering, polarized in the direction z′, where the symmetry axis of
the second apparatus, the z direction, makes an angle θ with respect to the z′

direction. Now some of the atoms emerging from the second apparatus will be
deflected up, and some down.

outcomes of large numbers of experiments.
We’ll see that we already know enough to calculate the probabilities for

deflection up or down for an arbitrary dipole orientation θ. On the average, for
a large number of atoms, the projection of µ on the z axis is

〈µz〉+z′ = µ cos θ, (2.21)

where the subscript means that the first apparatus, oriented in the z′ direc-
tion, selected atoms with µz′ = +µ. The relation between the axes of the two
apparatuses is shown in Fig. 2.7. The first is oriented in the z′ direction, and
selects either µz′ = ±µ; the second is oriented in the z direction, and selects
either µz = ±µ, where θ is the angle between these two directions. Now 〈µz〉+z′

means the average value of µz measured by the analyzing magnet, given that the
atoms entered that magnet with µz′ = +µ. Thus, by the meaning of probability,

µ cos θ = +µ p(+, +) − µ p(−, +), (2.22)

where p(±, +) is the probability of finding the dipole with µz = ±µ when the
incoming atom has µz′ = +µ. Since the atoms come out either deflected up or
deflected down,

1 = p(+, +) + p(−, +). (2.23)

We can solve these two linear equations for the individual probabilities:

p(+, +) =
1 + cos θ

2
= cos2

θ

2
, (2.24a)

p(−, +) =
1 − cos θ

2
= sin2 θ

2
. (2.24b)

Evidently, the previous cases are reproduced:

θ = 0 : p(+, +) = 1, p(−, +) = 0, (2.25a)
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θ = π : p(+, +) = 0, p(−, +) = 1, (2.25b)

θ =
π

2
: p(+, +) =

1

2
, p(−, +) =

1

2
. (2.25c)

If the incoming atoms had orientation along the −z′ axis, µz′ = −µ, results
are obtained from the above by replacing cos θ → cos(π − θ) = − cos θ:

p(+,−) =
1 − cos θ

2
= sin2 θ

2
= p(−, +), (2.26a)

p(−,−) =
1 + cos θ

2
= cos2

θ

2
= p(−,−), (2.26b)

where for example, p(−,−) refers an initial measurement that selects µz′ =
−µ, followed by a second measurement which gives µz′ = −µ. Evidently, the
successive measurements +, + are geometrically the same as −, −. There is
really only one independent function here. A significant test of consistency here
is that all the probabilities, as they must, lie between zero and one; the solution
to our two simultaneous equations might have turned out otherwise.

The results of two successive Stern Gerlach measurements, the first of which
selects magnetic moments along the z′ direction, the second along the direction
z, the angles between these two directions being θ, are summarized by the
following probability array:

p(±,±) =

(

cos2 θ

2
sin2 θ

2

sin2 θ

2
cos2 θ

2

)

. (2.27)


