Chapter 11

Position and Momentum

As we have seen, a unitary operator maintains the lengths of all vectors. A
simple example of a unitary operator consists in taking an orthonormal set of
vectors,

{('}, {la")}, (d'la") =d(d,a"), (11.1)
and rearranging or relabeling them in some way. The new set of vectors, being
collectively the same as the original set, is also orthonormal. This rearrangement
then defines a unitary transformation. For example, suppose we have a system of
n states, labeled by a1, ag, . .., ay, that is {|ax)}. Define V as the transformation
that replaces (ag| by (ag+1]:

(k] = (ak|V = (ars. (11.2)
Let us adopt a cylic notation so that
(ant1] = (1], and (anyr| = (ax/- (11.3)

First, let’s explicitly prove that V is unitary. From

(ak |V = (ar41], (11.4)
by taking the adjoint we find
Via) = laii1), (11.5)
so that
(ar|VVTar) = (arialarsr) = 0 = (ax|ar), (11.6)

for all k,1. Therefore, we conclude
VvV =1. (11.7)
Repeat the operation of V:

(ak|V? = (ak 1|V = (ansal, (11.8)
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so repeating this n times,
(ar|V"™ = (arin| = (arl, (11.9)
we recover the original state for all k, so we conclude
V=1 (11.10)

This is a generalization of 02 to an n state system.
In the example of the unitary operator corresponding to a rotation of a
spin-1/2 atom about the z axis,

, ol =o.. (11.11)

As we have stated before, any unitary operator can be thought of as a function
of a Hermitian operator,

U=ell Ul=e =y~ H' =@ (11.12)

Since the concept of eigenvectors and eigenvalues applies to Hermitian operators,
it also does to unitary operators.

Let us call the possible values of V, v/, which must be solutions of the
equation

(V)" =1, (11.13)

which means that the v" are the n nth roots of unity,

o =2 k=0,1,...,n—1, (11.14)
or any equivalent choice, i.e., if n is odd,
n—1 n—1
k=— .0, 11.15
2 ) 3 ) 3 2 3 ( )

going through integer steps. Thus, for example, when n = 3,
k=-1,0,1, so o =e ?™/3 1, e2"/3, (11.16)

the three cube roots of 1. In general there are n distinct eigenvalues. The
eigenvectors are automatically orthogonal and can be normalized to unity:

WV =@, V') =d ). (11.17)

These two equations are consistent with the adjoint operation, because taking
the adjoint of the first equation gives

Vi) =o', (11.18)

which is the same as
V') = o), (11.19)
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which in turn implies
V') =o' |v). (11.20)

From this we can deduce
W'y = §(0,0"). (11.21)

The unit operator can be constructed as usual,
1= "= )] (11.22)

To give an explicit construction of [v') (v'| we recall that for any physical property
(Hermitian operator)

A—d
[[a-a)=0, la'|= ]] <ﬁ) (11.23)
al (l”;é(l,

where the second equation says that, to construct |a’| we simply remove a factor
of A —d’ from the equation satisfied by A, apart for a constant factor. Here the
equations satisfied by V', and by its eigenvalue v’, are

Vi=1, ()" =1, (11.24)

SO we can write

(g)n —1=0= (; — 1) ((;)n_l + (g)n_2+...+1> . (11.25)

so we conclude that
n—1 v l
[v'| = constantz <J) . (11.26)
1=0

We determine the constant by multiplying by [v) on the right:

n—1 l n—1
1%
[v") = |v")(v']v") = constant E (—/) [v") = constant E 10", (11.27)
v
1=0 =0

where the sum is simply n. Therefore, the constant is 1/n, and we have
1 n—1 174 l
/ no_ = v
W) (| =~ > (w) : (11.28)
1=0
Now multiply this construction by the last of the original vectors,

n—1 n—1

fan) 0| = 3 @) HanlV = S0 0) ot (11.29)

=0 =0
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where the last left vector is (a;| because of the periodicity condition. Explicitly,

n—1

1 )
(an|vk) (vk| = - Z e 2k gy (11.30)
=0

Now if we multiply this on the right by |a,) = |ag), we get

anlok)? = =, (11.31)

S

which implies
1

(an|vg) = T (11.32)

where we have chosen the phase to be zero. Thus we conclude from Eq. (11.30)
that the two sets of vectors are related by a kind of Fourier series

n—1
1 _
(] = NG D e miklin g, (11.33)
1=0
which implies that the general transformation function is
- mikl/n
(v]ar) = N 2mikl/n (11.34)
The adjoint statement is
1 n—1 )
lug) = NG > ermikting), (11.35)
1=0
and )
(a]vg) = —=e2mikl/m, (11.36)
Vn
Note that the completeness statement
1 ik(l—m)/n
> lalvg) vk lam) = - D ermktmmiin — g, (11.37)
K k

is the statement that

n—1
doermkin 0, 140, 1=1,2,...,n—1, (11.38)
k=0
ie.,
n—1
D () =0, 1#£0, 1=1,2,...,n—1, (11.39)
k=0
where py is the kth nth root of unity, i.e., a solution to
()" = 1. (11.40)

Equation (11.39) says that
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the sum of the nth roots of unity is zero;

the sum of the squares of the nth roots of unity is zero;
o ..

e The sum of the n — 1 powers of the nth roots of unity is zero.

Now beginning with the |vg)’s, we define another unitary operator by cyclic
permutations:

Ulvk) = |vg41), (11.41)
SO
U™ |v) = |vesn) = |ve). (11.42)
SO ‘
Ur=1, o =" Lk=0,.. ,n-1. (11.43)
As above
n—1 l
1 U
/ o - -
) '] =~ (w) , (11.44)
=0
and
1 n—1 )
[ug) (ur|vn) = = Z e~ 2Tk, (11.45)
n =0
where
Ullvn) = |vng1) = |0r), (11.46)
and .
(vnl k) (wefon) = [(uglon)* = —, (11.47)

so making the simplest choice of phase,

) = % Zl:e_mm/n|vl> =" |u){(vilar) = |ax)! (11.48)

l

We are back to where we began. The whole closed system is
1 _
(ug|V = (ugs1l,  Ulvg) = vkt1),  (ulu) = %SQﬂzkl/n, (11.49)
where the two sets of eigenvectors correspond to V' and U, respectively,
(R V = e2™F/ (v ], Ulug) = 2%/ |uy,). (11.50)
We now need to consider the U and V operators together:

(ug|[VU = (ug41|U = (upg1|vrs+1, Ukt1 = upe? (11.51a)
(up|UV = (uglugV = (uper1 |us, (11.51b)
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or
(up|VU = (ug|[UV >/, (11.52)
for all k. Thus _
VU = e2™/myv. (11.53)
More generally, ‘ ‘
VU = 2™V = 2 2Ny, (11.54)
etc., leads to _
Vigk = 2mikt/nyrkyt (11.55)
or, more symmetrically,
eﬂ'ikl/nUkvl — efﬂ'ikl/nlek' (1156)

Note this is invariant under the substitution U — V, V — U~
eﬂ'ikl/nkafl — efﬂ'ikl/nUflvk, (1157)

for pre- and post-multiplying this by U’ gives back Eq. (11.56) with & and [
interchanged.
We are familiar with this system for n = 2, where

Ul=Vv?=1, UV =-VU. (11.58)

This is satisfied if
U=o0y; V=0, (11.59)

and the set of four operators is completed by

—iUV =o0,. (11.60)
Also,
L omikiy 2 1

= —e T/ = — 11.61
(ukve) N ,oor [uglu)® = —, (11.61)

is familiar as a statement for spin

1

oblol)? = 3, (11.62

since the two directions are perpendicular. For n = 2 there are four algebraic
elements |+) (%], or alternatively and equivalently, the four operators 1, o. In
general there are n? algebraic elements, and there are also n? UFV's, k =
0,1,...,n—1,1=0,1,...,n—1. Are these equivalent, alternative descriptions?
Yes. The proof follows from our construction of the diagonal measurement
symbol in Eq. (11.44),

1 .
k) k| = ~ > emrmklngt, (11.63)
l
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Then

1 —2mikl/n m
k) (k[ V™ = fur)(unm| = = e 2 /gty (11.64)
l

So any physical quantity of this system is a function of two fundamental quan-
tities U and V. And they have the property that measurement of one removes
all prior knowledge of the other:

1
2= 11.
[{urlo)|” = —, (11.65)

independent of k£ and [. Such pairs of physical quantities are called complemen-
tary variables.
It is interesting to analyze traces:

1 1 1
t § ! /Uk ! ! mk m m
anV _ng (u] V|u>—n§ (U )™ (U g1 | )

u’ m

1
= G0 > (um)" = Grodio, (11.66)

m

that is, all (1/n)U*V! have zero trace except for k = [ = 0. This generalizes
the zero trace of oy, oy, —io,0, = 0., but not 1. So if we write an arbitrary
physical quantity as

U, V) = %kalUle7 (11.67)
Kl

we have
tr f(U,V) = foo- (11.68)

Alternatively, suppose we have a classical function of two variables,
1 AL TWAY
== fulw) @), (11.69)
ki

so summing over the eigenvalues

Zf u',v') me Z 5> ) = nfoo, (11.70)
since the two sums are
ST W) =ndne, (W) = ndy. (11.71)
Thus,
tr f(U,V) Zf (', v") (11.72)

u’v’

where both sides represent a sum over all states.
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We have a classification of different kinds of physical variables. As we see,
this is very familiar for n = 2. How about the opposite limit, n — co? We will
find it convenient to make more explicit the Hermitian operator in U = e,
say. Let n — oo through odd numbers so that [see Eq. (11.15)]
2mi/n)k n—1 n- 1

k= 00, —
3 2 ) Y ) 2

€ — \/% (11.74)

Then with ¢ and p being Hermitian operators, defined by

o = el

(11.73)

Define

U=c¢, ¢ =¢ck so u =eF=e¢2mk/n (11.75a)

= ei2mi/n, (11.75b)

. . 2
V=¢P p=c, so v=e""!

Recalling from Eq. (11.55)

VEUL = omi/mkigriyh (11.76)
so that ) ) , , )

ezkepezleq _ ezekelezleqezkep7 (1177)
or L L SV .

PP d — ot P P 4o ZD7 (1178)
or

e~ Poir'agia'p _ ip'(a—q') (11.79)

But unitary transformation maintain algebraic relations, for example,
P f(q)eiP = f(e=Pgelt), (11.80)
Evident here, power by power,
eiq'p(q, .. q)eiq'p _ e—iq/pqeiq'pe—iq'pqeiq/pe—iq/p .. e—iq/pqeiq'p' (11.81)
Therefore, as we saw in Eq. (11.79),
exp {ip/ (eiiq,pqeiqlp)} = ' (a=d), (11.82)
As € — 0, ¢/, p’ become continuous variables, and
e~ Pgelt’P = g — ¢ (11.83)
and then, for arbitrarily small ¢,
(1 —ig'p)a(L +ig'p) =q+id'lg.pl =a~d, la.pl=ap—pg, ~ (11.84)

and therefore
lq,p] = i. (11.85)



107 Version of May 2, 2012

Alternatively, from Eq. (11.78),
161 Pe=ip'a — (10 (=P = oxp [iq’ (eip/qpe’ip/q)] 7 (11.86)
implying y »
P dpe= W = p p’7 (11.87)
again implying
g, p] = i. (11.88)
Note the symmetry in this relation, ¢ — p,p — —q.
Now consider the action on vectors,
(ur V! = (upp, (11.89)
or _
(d'le"? = {q" +4"|, (11.90)

where ¢/ = ke, ¢” = le, and ¢ + ¢’ = (k+ 1)e. As e — 0 we have continuous
variation as ¢ — 0, and

¢'? x 1 +iq"p, (11.91)
while
(@ +d" = {dl+d 68,<q’|, (11.92)
SO
(d'lp= %a%@’l- (11.93)

As a consistency check, consider

10
(d'|(ap —pq) = ¢'{d'Ip— —.8—q,<q’|q

v No— 44
(750001~ § 30101 = Wi (11.94)

which is consistent with Eq. (11.85). We see here an example of a general
relation

(dflap)=f (q’, %a%,) (d|- (11.95)

If true for fi and fo, it is true for f; + f2 and for fi fa:

W hten) + Rl = (5 (4350 )+ £ (4350 ) ) (WiaLse)
(d'fi(g;p) f2la,p) = fr (q’,l. )f2 ( ! la_q/> (¢|.  (11.96b)

This is certainly true for f(¢q) and p, and therefore true for any algebraic com-
bination of these ingredients.
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Similarly,
U*|or) = |vrr), (11.97)
or »
e p') = [p' +p"), (11.98)
where p’ = le, p”’ = ke, and p' + p” = (I + k)e. In the limit as p” — 0, we get
10
= -—Ip). 11.99
alv’) = - o P') (11.99)
The adjoint statement is
3]
'lg = i=(p'|. 11.100
(P'lg o | ( )

Again we can check consistency with Eq. (11.85):
('l(gp — pg) = iip’ —p’ii 'l =i (11.101)
op' op' ' '
Furthermore, we have the relation
.0
¥'If(a,p) :f(za—p,,p’)@’l, (11.102)

at least for any algebraic combination of f(p) and gq.

11.1 Transformation functions and wavefunctions

Consider an arbitrary vector |1). Its u wavefunction may be written in terms of
its v wavefunction by

W1y = @) [1), (11.103a)
or vice versa,
W) =Y ()W [1), (11.103b)
Thus the inner product between two state vectors is
(112) = (') (u'[2) (11.104a)
= > AP (')2) (11.104b)

Define the ¢ and p wavefunctions by
(W'[1) = Vey(d), (V'|1) = Vehr(p'). (11.105)
Then, in terms of these wavefunctions,

(112) = " evi(q) va(q), (11.106)

q/



11.1. TRANSFORMATION FUNCTIONS AND WAVEFUNCTIONS109 Version of May 2, 2012

so when we recognize that ¢’ = ke, d¢’ = (k4 1)e — ke = ¢, in the limit as e — 0,

(1]2) =/ dq'11(q")*a(q').- (11.107)
Alternatively,
<1|2>=Zew1<p’>*w2<p'>~/ dp'ip1 (p') a2 (p). (11.108)
P’ e
Also, since
1 1 € ; € PG
Hoyl\ — 2mikl/n _ ikele _ iq'p 11.1
(u'|v") e Wore o (11.109)
we have
N — € id'p /Oo dp’ ia'p’ ) (0 11
= € - —FC , .110a
¥(q') ; o ¥(p') T Y(p) ( )
and similarly
V)= e T Y() - /Oo i gy, (11.110D)
P’ 27T —o0o V 27T

We see that the momentum and position wavefunctions are related by Fourier
transformation.
To find the physical interpretation of the wavefunction, we let 1 — 2 and

(1)

1:[ dq/|1/)(q’)|2:/ dp' [y ("), (11.111)

and we infer that
e dq'|1(q')]? is the probability of finding ¢ in the interval ¢’ to ¢’ + dq’,
o dp'|y(p')|? is the probability of finding p in the interval p’ to p’ + dp’.
We check this by noting

(/[ )? = el (q)? = dg'|v(d), (11.1122)
[P = elw(@)? = dp'lvp ). (11.112b)



