
Chapter 11

Position and Momentum

As we have seen, a unitary operator maintains the lengths of all vectors. A
simple example of a unitary operator consists in taking an orthonormal set of
vectors,

{〈a′|}, {|a′〉}, 〈a′|a′′〉 = δ(a′, a′′), (11.1)

and rearranging or relabeling them in some way. The new set of vectors, being
collectively the same as the original set, is also orthonormal. This rearrangement
then defines a unitary transformation. For example, suppose we have a system of
n states, labeled by a1, a2, . . . , an, that is {|ak〉}. Define V as the transformation
that replaces 〈ak| by 〈ak+1|:

〈ak| → 〈ak|V = 〈ak+1|. (11.2)

Let us adopt a cylic notation so that

〈an+1| = 〈a1|, and 〈an+k| = 〈ak|. (11.3)

First, let’s explicitly prove that V is unitary. From

〈ak|V = 〈ak+1|, (11.4)

by taking the adjoint we find

V †|al〉 = |al+1〉, (11.5)

so that
〈ak|V V †|al〉 = 〈ak+1|al+1〉 = δkl = 〈ak|al〉, (11.6)

for all k, l. Therefore, we conclude

V V † = 1. (11.7)

Repeat the operation of V :

〈ak|V 2 = 〈ak+1|V = 〈ak+2|, (11.8)
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so repeating this n times,

〈ak|V n = 〈ak+n| = 〈ak|, (11.9)

we recover the original state for all k, so we conclude

V n = 1. (11.10)

This is a generalization of σ2
z to an n state system.

In the example of the unitary operator corresponding to a rotation of a
spin-1/2 atom about the z axis,

ei φ

2
σz , σ†

z = σz. (11.11)

As we have stated before, any unitary operator can be thought of as a function
of a Hermitian operator,

U = eiH , U † = e−iH = U−1, H† = H. (11.12)

Since the concept of eigenvectors and eigenvalues applies to Hermitian operators,
it also does to unitary operators.

Let us call the possible values of V , v′, which must be solutions of the
equation

(v′)n = 1, (11.13)

which means that the v′ are the n nth roots of unity,

v′ = e2πik/n, k = 0, 1, . . . , n− 1, (11.14)

or any equivalent choice, i.e., if n is odd,

k = −n− 1

2
, . . . , 0, . . . ,

n− 1

2
, (11.15)

going through integer steps. Thus, for example, when n = 3,

k = −1, 0, 1, so v′ = e−2πi/3, 1, e2πi/3, (11.16)

the three cube roots of 1. In general there are n distinct eigenvalues. The
eigenvectors are automatically orthogonal and can be normalized to unity:

〈v′|V = 〈v′|v′, V |v′〉 = v′|v′〉. (11.17)

These two equations are consistent with the adjoint operation, because taking
the adjoint of the first equation gives

V †|v′〉 = v′∗|v′〉, (11.18)

which is the same as
V −1|v′〉 = v′−1|v′〉, (11.19)
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which in turn implies

V |v′〉 = v′|v′〉. (11.20)

From this we can deduce

〈v′|v′′〉 = δ(v′, v′′). (11.21)

The unit operator can be constructed as usual,

1 =
∑

v′

|v′| =
∑

v′

|v′〉〈v′|. (11.22)

To give an explicit construction of |v′〉〈v′| we recall that for any physical property
(Hermitian operator)

∏

a′

(A− a′) = 0, |a′| =
∏

a′′ 6=a′

(

A− a′

a′ − a′′

)

, (11.23)

where the second equation says that, to construct |a′| we simply remove a factor
of A− a′ from the equation satisfied by A, apart for a constant factor. Here the
equations satisfied by V , and by its eigenvalue v′, are

V n = 1, (v′)n = 1, (11.24)

so we can write

(

V

v′

)n

− 1 = 0 =

(

V

v′
− 1

)

(

(

V

v′

)n−1

+

(

V

v′

)n−2

+ . . .+ 1

)

. (11.25)

so we conclude that

|v′| = constant

n−1
∑

l=0

(

V

v′

)l

. (11.26)

We determine the constant by multiplying by |v′〉 on the right:

|v′〉 = |v′〉〈v′|v′〉 = constant
n−1
∑

l=0

(

V

v′

)l

|v′〉 = constant
n−1
∑

l=0

1|v′〉, (11.27)

where the sum is simply n. Therefore, the constant is 1/n, and we have

|v′〉〈v′| =
1

n

n−1
∑

l=0

(

V

v′

)l

. (11.28)

Now multiply this construction by the last of the original vectors,

〈an|v′〉〈v′| =
1

n

n−1
∑

l=0

(v′)−l〈an|V l =
1

n

n−1
∑

l=0

(v′)−l〈al+n|, (11.29)
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where the last left vector is 〈al| because of the periodicity condition. Explicitly,

〈an|vk〉〈vk| =
1

n

n−1
∑

l=0

e−2πikl/n〈al|. (11.30)

Now if we multiply this on the right by |an〉 = |a0〉, we get

|〈an|vk〉|2 =
1

n
, (11.31)

which implies

〈an|vk〉 =
1√
n
, (11.32)

where we have chosen the phase to be zero. Thus we conclude from Eq. (11.30)
that the two sets of vectors are related by a kind of Fourier series

〈vk| =
1√
n

n−1
∑

l=0

e−2πikl/n〈al|, (11.33)

which implies that the general transformation function is

〈vk|al〉 =
1√
n
e−2πikl/n. (11.34)

The adjoint statement is

|vk〉 =
1√
n

n−1
∑

l=0

e2πikl/n|al〉. (11.35)

and

〈al|vk〉 =
1√
n
e2πikl/n. (11.36)

Note that the completeness statement

∑

k

〈al|vk〉〈vk|am〉 =
1

n

∑

k

e2πik(l−m)/n = δlm, (11.37)

is the statement that

n−1
∑

k=0

e2πikl/n = 0, l 6= 0, l = 1, 2, . . . , n− 1, (11.38)

i.e.,
n−1
∑

k=0

(µk)l = 0, l 6= 0, l = 1, 2, . . . , n− 1, (11.39)

where µk is the kth nth root of unity, i.e., a solution to

(µk)n = 1. (11.40)

Equation (11.39) says that
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• the sum of the nth roots of unity is zero;

• the sum of the squares of the nth roots of unity is zero;

• . . .,

• The sum of the n− 1 powers of the nth roots of unity is zero.

Now beginning with the |vk〉’s, we define another unitary operator by cyclic
permutations:

U |vk〉 = |vk+1〉, (11.41)

so
Un|vk〉 = |vk+n〉 = |vk〉. (11.42)

so
Un = 1, u′ = e2πik/n, k = 0, . . . , n− 1. (11.43)

As above

|u′〉〈u′| =
1

n

n−1
∑

l=0

(

U

u′

)l

, (11.44)

and

|uk〉〈uk|vn〉 =
1

n

n−1
∑

l=0

e−2πikl/nU l|vn〉, (11.45)

where
U l|vn〉 = |vn+l〉 = |vl〉, (11.46)

and

〈vn|uk〉〈uk|vn〉 = |〈uk|vn〉|2 =
1

n
, (11.47)

so making the simplest choice of phase,

|uk〉 =
1√
n

∑

l

e−2πikl/n|vl〉 =
∑

l

|vl〉〈vl|ak〉 = |ak〉! (11.48)

We are back to where we began. The whole closed system is

〈uk|V = 〈uk+1|, U |vk〉 = |vk+1〉, 〈uk|vl〉 =
1√
n
e2πikl/n, (11.49)

where the two sets of eigenvectors correspond to V and U , respectively,

〈vk|V = e2πik/n〈vk|, U |uk〉 = e2πik/n|uk〉. (11.50)

We now need to consider the U and V operators together:

〈uk|V U = 〈uk+1|U = 〈uk+1|uk+1, uk+1 = uke
2πi/n, (11.51a)

〈uk|UV = 〈uk|ukV = 〈uk+1|uk, (11.51b)
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or
〈uk|V U = 〈uk|UV e2πi/n, (11.52)

for all k. Thus
V U = e2πi/nUV. (11.53)

More generally,
V 2U = e2πi/nV UV = e2π2i/nUV 2, (11.54)

etc., leads to
V lUk = e2πikl/nUkV l, (11.55)

or, more symmetrically,

eπikl/nUkV l = e−πikl/nV lUk. (11.56)

Note this is invariant under the substitution U → V , V → U−1:

eπikl/nV kU−l = e−πikl/nU−lV k, (11.57)

for pre- and post-multiplying this by U l gives back Eq. (11.56) with k and l
interchanged.

We are familiar with this system for n = 2, where

U2 = V 2 = 1, UV = −V U. (11.58)

This is satisfied if
U = σx, V = σy , (11.59)

and the set of four operators is completed by

−iUV = σz . (11.60)

Also,

〈uk|vl〉 =
1√
n
e2πikl/n, or |〈uk|vl〉|2 =

1

n
, (11.61)

is familiar as a statement for spin

|〈σ′
x|σ′

y〉|2 =
1

2
, (11.62)

since the two directions are perpendicular. For n = 2 there are four algebraic
elements |±〉〈±|, or alternatively and equivalently, the four operators 1, σ. In
general there are n2 algebraic elements, and there are also n2 UkV l’s, k =
0, 1, . . . , n−1, l = 0, 1, . . . , n−1. Are these equivalent, alternative descriptions?
Yes. The proof follows from our construction of the diagonal measurement
symbol in Eq. (11.44),

|uk〉〈uk| =
1

n

∑

l

e−2πikl/nU l. (11.63)
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Then

|uk〉〈uk|V m = |uk〉〈uk+m| =
1

n

∑

l

e−2πikl/nU lV m. (11.64)

So any physical quantity of this system is a function of two fundamental quan-
tities U and V . And they have the property that measurement of one removes
all prior knowledge of the other:

|〈uk|vl〉|2 =
1

n
, (11.65)

independent of k and l. Such pairs of physical quantities are called complemen-

tary variables.

It is interesting to analyze traces:

1

n
trUkV l =

1

n

∑

u′

〈u′|UkV l|u′〉 =
1

n

∑

m

(um)k〈um+l|um〉

= δl0
1

n

∑

m

(um)k = δk0δl0, (11.66)

that is, all (1/n)UkV l have zero trace except for k = l = 0. This generalizes
the zero trace of σx, σy , −iσxσy = σz , but not 1. So if we write an arbitrary
physical quantity as

f(U, V ) =
1

n

∑

kl

fklU
kV l, (11.67)

we have
tr f(U, V ) = f00. (11.68)

Alternatively, suppose we have a classical function of two variables,

f(u′, v′) =
1

n

∑

kl

fkl(u
′)k(v′)l, (11.69)

so summing over the eigenvalues

∑

u′v′

f(u′, v′) =
1

n

∑

kl

fkl

∑

u′

(u′)k
∑

v′

(v′)l = nf00, (11.70)

since the two sums are

∑

u′

(u′)k = nδn0,
∑

v′

(v′)l = nδl0. (11.71)

Thus,

tr f(U, V ) =
1

n

∑

u′v′

f(u′, v′), (11.72)

where both sides represent a sum over all states.
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We have a classification of different kinds of physical variables. As we see,
this is very familiar for n = 2. How about the opposite limit, n → ∞? We will
find it convenient to make more explicit the Hermitian operator in U = eiH ,
say. Let n→ ∞ through odd numbers so that [see Eq. (11.15)]

u′ = e(2πi/n)k, k =
n− 1

2
, . . . , 0, . . . ,−n− 1

2
. (11.73)

Define

ǫ =

√

2π

n
. (11.74)

Then with q and p being Hermitian operators, defined by

U = eiǫq, q′ = ǫk, so u′ = eiǫ2k = ei2πk/n, (11.75a)

V = eiǫp, p′ = ǫl, so v′ = eiǫ2l = ei2πl/n. (11.75b)

Recalling from Eq. (11.55)

V kU l = e(2πi/n)klU lV k, (11.76)

so that
eikǫpeilǫq = eiǫkǫleilǫqeikǫp, (11.77)

or
eiq′peip′q = eiq′p′

eip′qeiq′p, (11.78)

or
e−iq′peip′qeiq′p = eip′(q−q′). (11.79)

But unitary transformation maintain algebraic relations, for example,

e−iq′pf(q)eiq′p = f(e−iq′pqeiq′p). (11.80)

Evident here, power by power,

eiq′p(q · · · q)eiq′p = e−iq′pqeiq′pe−iq′pqeiq′pe−iq′p · · · e−iq′pqeiq′p. (11.81)

Therefore, as we saw in Eq. (11.79),

exp
[

ip′
(

e−iq′pqeiq′p
)]

= eip′(q−q′). (11.82)

As ǫ→ 0, q′, p′ become continuous variables, and

e−iq′pqeiq′p = q − q′, (11.83)

and then, for arbitrarily small q′,

(1 − iq′p)q(1 + iq′p) = q + iq′[q, p] = q − q′, [q, p] = qp− pq, (11.84)

and therefore
[q, p] = i. (11.85)
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Alternatively, from Eq. (11.78),

eip′qeiq′pe−ip′q = eiq′(p−p′) = exp
[

iq′
(

eip′qpe−ip′q
)]

, (11.86)

implying
eip′qpe−ip′q = p− p′, (11.87)

again implying
[q, p] = i. (11.88)

Note the symmetry in this relation, q → p, p→ −q.
Now consider the action on vectors,

〈uk|V l = 〈uk+l|, (11.89)

or
〈q′|eiq′′p = 〈q′ + q′′|, (11.90)

where q′ = kǫ, q′′ = lǫ, and q′ + q′′ = (k + l)ǫ. As ǫ → 0 we have continuous
variation as q′′ → 0, and

eiq′′p ≈ 1 + iq′′p, (11.91)

while

〈q′ + q′′| ≈ 〈q′| + q′′
∂

∂q′
〈q′|, (11.92)

so

〈q′|p =
1

i

∂

∂q′
〈q′|. (11.93)

As a consistency check, consider

〈q′|(qp− pq) = q′〈q′|p− 1

i

∂

∂q′
〈q′|q

= q′
1

i

∂

∂q′
〈q′| − 1

i

∂

∂q′
q′〈q′| = 〈q′|i, (11.94)

which is consistent with Eq. (11.85). We see here an example of a general
relation

〈q′|f(q, p) = f

(

q′,
1

i

∂

∂q′

)

〈q′|. (11.95)

If true for f1 and f2, it is true for f1 + f2 and for f1f2:

〈q′| (f1(q, p) + f2(q, p)) =

(

f1

(

q′,
1

i

∂

∂q′

)

+ f2

(

q′,
1

i

∂

∂q′

))

〈q′|,(11.96a)

〈q′|f1(q, p)f2(q, p) = f1

(

q′,
1

i

∂

∂q′

)

f2

(

q′,
1

i

∂

∂q′

)

〈q′|. (11.96b)

This is certainly true for f(q) and p, and therefore true for any algebraic com-
bination of these ingredients.
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Similarly,
Uk|vl〉 = |vl+k〉, (11.97)

or
eip′′q|p′〉 = |p′ + p′′〉, (11.98)

where p′ = lǫ, p′′ = kǫ, and p′ + p′′ = (l + k)ǫ. In the limit as p′′ → 0, we get

q|p′〉 =
1

i

∂

∂p′
|p′〉. (11.99)

The adjoint statement is

〈p′|q = i
∂

∂p′
〈p′|. (11.100)

Again we can check consistency with Eq. (11.85):

〈p′|(qp− pq) =

(

i
∂

∂p′
p′ − p′i

∂

∂p′

)

〈p′| = 〈p′|i. (11.101)

Furthermore, we have the relation

〈p′|f(q, p) = f(i
∂

∂p′
, p′)〈p′|, (11.102)

at least for any algebraic combination of f(p) and q.

11.1 Transformation functions and wavefunctions

Consider an arbitrary vector |1〉. Its u wavefunction may be written in terms of
its v wavefunction by

〈u′|1〉 =
∑

v′

〈u′|v′〉〈v′|1〉, (11.103a)

or vice versa,

〈v′|1〉 =
∑

u′

〈v′|u′〉〈u′|1〉, (11.103b)

Thus the inner product between two state vectors is

〈1|2〉 =
∑

u′

〈1|u′〉〈u′|2〉 (11.104a)

=
∑

u′

〈1|v′〉〈v′|2〉 (11.104b)

Define the q and p wavefunctions by

〈u′|1〉 =
√
ǫψ1(q

′), 〈v′|1〉 =
√
ǫψ1(p

′). (11.105)

Then, in terms of these wavefunctions,

〈1|2〉 =
∑

q′

ǫψ1(q
′)∗ψ2(q

′), (11.106)
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so when we recognize that q′ = kǫ, dq′ = (k+1)ǫ−kǫ = ǫ, in the limit as ǫ→ 0,

〈1|2〉 =

∫ ∞

−∞

dq′ψ1(q
′)∗ψ2(q

′). (11.107)

Alternatively,

〈1|2〉 =
∑

p′

ǫψ1(p
′)∗ψ2(p

′) →
∫ ∞

−∞

dp′ψ1(p
′)∗ψ2(p

′). (11.108)

Also, since

〈u′|v′〉 =
1√
n
e2πikl/n =

ǫ√
2π
eikǫlǫ =

ǫ√
2π
eiq′p′

, (11.109)

we have

ψ(q′) =
∑

p′

ǫ√
2π
eiq′p′

ψ(p′) →
∫ ∞

−∞

dp′√
2π
eiq′p′

ψ(p′), (11.110a)

and similarly

ψ(p′) =
∑

p′

ǫ√
2π
e−iq′p′

ψ(q′) →
∫ ∞

−∞

dq′√
2π
e−iq′p′

ψ(q′). (11.110b)

We see that the momentum and position wavefunctions are related by Fourier
transformation.

To find the physical interpretation of the wavefunction, we let 1 → 2 and

〈 | 〉 = 1 =

∫ ∞

−∞

dq′|ψ(q′)|2 =

∫ ∞

−∞

dp′|ψ(p′)|2, (11.111)

and we infer that

• dq′|ψ(q′)|2 is the probability of finding q in the interval q′ to q′ + dq′,

• dp′|ψ(p′)|2 is the probability of finding p in the interval p′ to p′ + dp′.

We check this by noting

|〈u′| 〉|2 = ǫ|ψ(q′)|2 = dq′|ψ(q′)|2, (11.112a)

|〈v′| 〉|2 = ǫ|ψ(p′)|2 = dp′|ψ(p′)|2. (11.112b)


