
Chapter 10

Time Evolution

So far, we have been discussing kinematics—the description of a physical system.
We will have more to say about kinematics this semester and next. But now the
time has come to introduce dynamics—how a physical system evolves in time.

One of the invariances of any isolated physical system is the freedom to
change the origin of time. Let us imagine a small (infinitesimal) change in the
time variable (time “coordinate”):

t→ t̄ = t− δt, δt = constant. (10.1)

In going from t to t̄, the origin of time is shifted forward by an amount δt. Under
such a change in the time parameter, states and operators do not change. How-
ever, we want to introduce new states and new operators which have the same
properties relative to the new time coordinate as the old states and operators
had relative to the old time coordinate t:

t coordinate : X, | 〉, 〈 |, (10.2a)

t̄ coordinate : X, | 〉, 〈 |. (10.2b)

The new states and operators have the same inter-relations as the old states
and operators; therefore, the two sets are related by a unitary transformation:

X = U−1XU, U−1 = U †, | 〉 = U †| 〉, 〈 | = 〈 |U. (10.3)

What can we say about the unitary operator here? If δt = 0, the change in the
states and operators is zero, so U = 1. If δt 6= 0 but very small, U must differ
infinitesimally from 1. We therefore write

U = 1 −
i

h̄
δtH. (10.4)

We’ll see in a moment why it’s convenient to have the −i/h̄ factor. What are
the properties of the operator H? U must be unitary:

1 = UU † =

(

1 −
i

h̄
δtH

) (

1 +
i

h̄
δtH†

)

= 1 −
i

h̄
δt(H −H†) +O(δt2). (10.5)
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Since δt is infinitesimial, we will omit the term of order δt2. We must concude
that

H = H†, H is Hermitian. (10.6)

This is why the i was put in front of the δtH term.
Therefore, we suspect that H must represent a physical property. We will

see that it corresponds to the energy of the system; we will call H the energy

operator or the Hamiltonian. Certainly, H has the right units to be an energy,
since the units of h̄ are energy times time.

What happens if the time displacement is not infinitesimal? We recognize
that the above form corrsponds to the first two terms in the Taylor series for

U = e−itH/h̄. (10.7)

Since this is indeed a unitary operator, this is indeed the correct extrapolation.
A dynamical variable is an operator, characterizing in part a dynamical

system, which changes as time evolves. An example we’ve seen in this course is
the angular momentum J. Let v(t) be some dynamical variable. What happens
under an infinitesimal change in the time origin, given by Eq. (10.1)?

v(t) = v(t̄+ δt) = v(t̄), (10.8)

where v is the new (transformed) variable: by definition, the new variable at
the new time is the old variable at the old time. This is what we mean by
saying that the new operators have the same properties relative to the new time
coordinate as the old operators had relative to the old time coordinate. Simply
changing the name of the coordinate, we have

v(t) = v(t+ δt) = v(t) + δt
d

dt
v(t) = v(t) − δv(t), (10.9)

where δv(t) is just the change in the operator at the same value of the time
coordinate,

δv(t) = v(t) − v(t). (10.10)

On the other hand, we can compute δv from the unitary operator U :

v(t) = U †v(t)U =

(

1 +
i

h̄
δtH

)

v(t)

(

1 −
i

h̄
δtH

)

= v(t) +
1

ih̄
[v(t)H δt−H δt v(t)] . (10.11)

It is convenient to introduce a new notation, the commutator of two operators:

[A,B] ≡ AB −BA. (10.12)

Then

δv(t) = −δt
d

dt
v(t) = −δt

1

ih̄
[v(t), H ], (10.13)
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or
d

dt
v(t) =

1

ih̄
[v(t), H ]. (10.14)

Sometimes we deal with functions which besides depending on dynamical
variables, make explicit reference to the time parameter as well:

F (v(t), t). (10.15)

Under the above unitary transformation,

F = U−1F (v(t), t)U = F (U−1v(t)U, t)

= F (v(t), t), (10.16)

since the numerical coordinate t is not altered by a unitary transformation, and
algebraic relations are preserved by unitary transformations. But directly,

U−1FU =

(

1 +
i

h̄
δtH

)

F

(

1 −
i

h̄
δtH

)

= F (v(t), t) +
1

ih̄
[F,H δt]. (10.17)

Then, from the definition of the derivative,

F (v(t), t) − F (v(t), t)

δt
=
F (v(t+ δt), t) − F (v(t), t)

δt
, (10.18)

we see that
d

dt
F (v(t), t) −

∂

∂t
F (v(t), t) =

1

ih̄
[F (v(t), t), H ] , (10.19)

where the second term appears because under a unitary transformation the
explicit time dependence is not changed. That is, the total derivative acts on
both v(t) and t, so the partial derivative removes that part of the total time
derivative that comes from the explicit appearance of t in F . Thus

d

dt
F =

∂

∂t
F +

1

ih̄
[F,H ]. (10.20)

The commutator induces the time change in the dynamical variables; the partial
derivative takes care of any explicit time dependence. These equations (10.14)
and (10.20) are called the Heisenberg equations of motion.

Now, what about the states? How do state vectors evolve in time? Suppose
we have a state specified by the value of a dynamical variable v(t), v′:

〈v′, t| (10.21)

represents a state in which, at time t, v(t) has the value v′:

〈v′, t|v(t) = 〈v′, t|v′. (10.22)
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Under the time displacement, the corresponding operator transformation is

v(t) → v(t) = v(t+ δt) = U−1v(t)U. (10.23)

The corresponding transformation of the states is

〈v′, t| = 〈v′, t|U. (10.24)

This is the state in which v(t) has the value v′:

〈v′, t|v(t) = 〈v′, t|UU−1v(t)U = 〈v′, t|v(t)U = v′〈v′, t|U

= 〈v′, t|v′, (10.25)

as we expect. This is just the statement that under a unitary transformation,
the eigenvalues of an operator do not change. Now recognize that 〈v′, t| is the
state in which v(t+ δt| has the value v′ Therefore,

〈v′, t| = 〈v′, t+ δt|; (10.26)

it is the state which has the same properties at the time t+ δt as 〈v′, t| did at
time t. Then

〈v′, t+ δt| = 〈v′, t|

(

1 −
i

h̄
δtH

)

, (10.27)

where the unitary transformation relates analogous states at different times.
Therefore,

ih̄
〈v′, t+ δt| − 〈v′, t|

δt
= 〈v′, t|H, (10.28)

so in the limit δt→ 0,

ih̄
∂

∂t
〈v′, t| = 〈v′, t|H. (10.29)

To get the corresponding statement for right vectors, we simply take the adjoint:

−ih̄
∂

∂t
|v′, t〉 = H |v′, t〉. (10.30)

This is Schrödinger’s equation, which governs the time evolution of states. (The
partial derivative symbols in Eqs. (10.29) and (10.30) means only that v′ is not
being changed.)

We know that under unitary transformations, numbers do not change. Con-
sider the matrix element

〈v′, t|F (t)|v′′, t〉 = 〈v′, t|F (t)|v′′, t〉

= 〈v′, t+ δt|F (t+ δt)|v′′, t+ δt〉, (10.31)

supposing that F is not an explicit function of the time. Therefore,

〈v′, t|F (t)|v′′, t〉 (10.32)
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is independent of the time, or

d

dt
〈v′, t|F (t)|v′′, t〉 = 0. (10.33)

Let’s check this by using the equations of motion,

d

dt
〈v′, t|F (t)|v′′, t〉 = 〈v′, t|

1

ih̄
HF (t)|v′′, t〉 + 〈v′, t|F (t)

1

−ih̄
H |v′′, t〉

+ 〈v′, t|
1

ih̄
[F (t), H ]|v′′, t〉 = 0. (10.34)

How does the energy operator depend on time?

dH

dt
=

∂

∂t
H +

1

ih̄
[H,H ] =

∂

∂t
H, (10.35)

so if H does not explicitly depend on time, which will be true if we’re dealing
with a self-contained or isolated system,

H = constant; (10.36)

in the language of classical mechanics, H is a constant of the motion.
How do we translate Schrödinger’s equation to wavefunctions? Let

〈a′, t| (10.37)

be a state in which the physical property, i.e., the dynamical variable, A(t) has
the value a′ (we continue to suppose for simplicity that A completely charac-
terizes the system)

〈a′, t|A(t) = 〈a′, t|a′. (10.38)

Let | 〉 be an arbitrary state. The probability amplitude of finding the system
in the state 〈a′, t|, that is, of finding A(t) = a′, is the wavefunction

ψ(a′, t) = 〈a′, t| 〉. (10.39)

Now using Schrödinger’s equation for states,

ih̄
∂

∂t
〈a′, t| 〉 = 〈a′|H | 〉. (10.40)

If, in addition, | 〉 = |E〉 is an energy eigenstate,

H |E〉 = E|E〉, (10.41)

whereE is the numerical value of the energy of that state, Schrödinger’s equation
becomes

ih̄
∂

∂t
〈a′, t|E〉 = E〈a′, t|E〉, (10.42)

or

ih̄
∂

∂t
ψE(a′, t) = EψE(a′, t), (10.43)
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which is the Schrödinger equation for a wavefunction corresponding to a state
of definite energy. The solution to this equation is immediate:

ψE(a′, t) = e−iEt/h̄ψE(a′, 0). (10.44)

A state of definite energy has a wavefunction of constant magnitude, and a
phase which oscillates in time with frequency

ω =
E

h̄
, E = h̄ω. (10.45)

Such states are called stationary states, since only the phase varies. The dy-
namical problem for a stationary state is to solve the eigenvalue equation

H |E〉 = E|E〉, (10.46)

for the states |E〉 and the energies E, which is sometimes, rather erroneously,
called the “time-independent Schrödinger equation.”

10.1 Spin-1/2

Suppose we now ask a dynamical question for spin 1/2. An atom with a definite
value of the spin along the z axis, h̄

2
σ′

z , enters a region of magnetic field B

oriented along the z′ axis axis (note that we do not call the magnetic field H

to avoid confusion with the Hamiltonian); as usual, the angle between the z
direction and the z′ direction is called θ. After a time t, what is the probability
of finding the atom in the same state as originally; and what is the probability
of finding it in the other state?

We want to compute the probability amplitude

〈σ′′
z , t|σ

′
z , 0〉, (10.47)

the transition amplitude between the initial state |σ′
z , 0〉 and the final state

|σ′′
z , t〉. The latter is the state in which σz(t) has the value σ′′

z . The probability
amplitude satisfies

ih̄
∂

∂t
〈σ′′

z , t|σ
′
z , 0〉 = 〈σ′′

z , t|H |σ′
z , 0〉, (10.48)

where

H = −µ ·B = −γ
h̄

2
σz′B. (10.49)

One way of proceeding is to insert a complete set of σz states at time t:

〈σ′′
z , t|H |σ′

z , 0〉 =
∑

σ′′′

z

〈σ′′
z , t|H |σ′′′

z , t〉〈σ
′′′
z , t|σ

′
z , 0〉, (10.50)

so if we write
ψσ′

z

(σ′′
z , t) = 〈σ′′

z , t|σ
′
z , 0〉, (10.51)
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we have the matrix equation

ih̄
∂

∂t
ψσ′

z

= −γ
h̄

2
Bσz′ψσ′

z

, (10.52)

where, as seen in Eq. (8.32),

σz′ =

(

cos θ sin θe−iφ

sin θeiφ − cos θ

)

. (10.53)

Thus, we obtain the matrix version of Schrödinger’s equation

i
∂

∂t
ψσ′

z

= −ωσ′
zψσ′

z

, ω =
1

2
γB. (10.54)

Written in terms of components, this reads

i
∂

∂t

(

ψ(+)
ψ(−)

)

= −ω

(

cos θ sin θe−iφ

sin θeiφ − cos θ

) (

ψ(+)
ψ(−)

)

, (10.55)

or the homogeneous system of equations,

i
∂

∂t
ψ(+) = −ω

(

cos θψ(+) + sin θe−iφψ(−)
)

, (10.56a)

i
∂

∂t
ψ(−) = −ω

(

sin θeiφψ(+) − cos θψ(−)
)

. (10.56b)

The way to solve this matrix equation is to note that ψσ′

z

must be a linear
combination of the eigenfunctions ψ±z′ , Eqs. (8.45) and (8.52),

ψ+z′ =

(

cos θ
2
e−iφ/2

sin θ
2
eiφ/2

)

, (10.57a)

ψ−z′ =

(

− sin θ
2
e−iφ/2

cos θ
2
eiφ/2

)

, (10.57b)

which satisfy the eigenvalue equations

σz′ψ±z′ = ±ψ±z′ . (10.58)

Thus we write, in terms of time-dependent coefficients,

ψσ′

z

(t) = α+(t)ψ+z′ + α−(t)ψ−z′ , (10.59)

and the Schrödinger equation (10.54) becomes

i
∂

∂t
ψσ′

z

= i
d

dt
α+(t)ψ+z′ + i

d

dt
α−(t)ψ−z′

= −ω [α+(t)ψ+z′ − α−(t)ψ−z′ ] . (10.60)

Now since ψ+z′ , ψ−z′ are independent, indeed orthogonal, we must have

i
d

dt
α+(t) = −ωα+(t), i

d

dt
α−(t) = ωα−(t), (10.61)
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which have the solutions

α+(t) = eiωtα+(0), α−(t) = e−iωtα−(0). (10.62)

We determine the constants α±(0) from

ψσ′

z

(0) = α+(0)ψ+z′ + α−(0)ψ−z′ . (10.63)

If the initial state is “spin up,” σ′
z = +1, this reads

(

1
0

)

= α+(0)

(

cos θ
2
e−iφ/2

sin θ
2
eiφ/2

)

+ α−(0)

(

− sin θ
2
e−iφ/2

cos θ
2
eiφ/2

)

, (10.64)

or

1 =

[

α+(0) cos
θ

2
− α−(0) sin

θ

2

]

e−iφ/2, (10.65a)

0 =

[

α+(0) sin
θ

2
+ α−(0) cos

θ

2

]

e+iφ/2, (10.65b)

The last equation implies

α+(0) = β cos
θ

2
, α−(0) = −β sin

θ

2
, (10.66)

and then the first equation here implies

1 = βe−iφ/2, β = eiφ/2. (10.67)

Thus the wavefunction is

ψ+z(t) = eiωt cos
θ

2
eiφ/2ψ+z′ − e−iωt sin

θ

2
eiφ/2ψ−z′ . (10.68)

What did we do here? We wrote, inserting a complete set of z′ states,

ψσ′

z

(σ′′
z , t) = 〈σ′′

z , t|σ
′
z, 0〉 =

∑

σ′′′

z
′

〈σ′′
z , t|σ

′′′
z′ , t〉〈σ′′′

z′ , t|σ′
z , 0〉

=
∑

σ′′′

z
′

ψσ′′′

z
′

(σ′′
z , 0)〈σ′′′

z′ , t|σ′
z , 0〉, (10.69)

where we have noted that

〈σ′′
z , t|σ

′′′
z′ , t〉 = 〈σ′′

z , 0|σ
′′′
z′ , 0〉. (10.70)

The last transformation function in Eq. (10.69) has a simple time dependence,
since it satisfies

ih̄
∂

∂t
〈σ′′′

z′ , t|σ′
z , 0〉 = −h̄ω〈σ′′′

z′ , t|σz′ |σ′
z, 0〉 = −h̄ωσ′′′

z′ 〈σ′′′
a′ , t|σ′

z , 0〉, (10.71)
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which integrates to

〈σ′′′
a′ , t|σ′

z , 0〉 = eiωσ′′′

z
′ t〈σ′′′

a′ , 0|σ′
z , 0〉 = ασ′′′

z
′

(t). (10.72)

Thus, for example,

ψ+z(t) = ψ+z′eiωt〈+z′| + z〉 + ψ−z′e−iωt〈−z′| + z〉

= ψ+z′eiωtψ+z′(+)∗ + ψ−z′e−iωtψ−z′(+)∗

= cos
θ

2
eiφ/2eiωtψ+z′ − sin

θ

2
eiφ/2e−iωtψ−z′ , (10.73)

which coincides with Eq. (10.68).
Our original question was to compute the probability of the spin remaining in

its original orientation. For example, what is p(+z, t; +z, 0)? The corresponding
amplitude is

〈+z, t| + z, 0〉 = ψ+z(+, t)

= cos
θ

2
eiφ/2eiωtψ+z′(+) − sin

θ

2
eiφ/2e−iωtψ−z′(+)

= cos2
θ

2
eiωt + sin2 θ

2
e−iωt, (10.74)

where the last, evidently, reduces to 1 at t = 0. Therefore the probability is

p(+z, t; +z, 0) = |ψ+z(+, t)|
2

= cos4
θ

2
+ sin4 θ

2
+ 2 cos2

θ

2
sin2 θ

2
cos 2ωt

= 1 − 4 cos2
θ

2
sin2 θ

2

1 − cos 2ωt

2

= 1 − sin2 θ sin2 ωt. (10.75)

We check this by computing the probability for the spin to flip:

p(−z, t; +z, 0) = |ψ+z(−, t)|
2

= | cos
θ

2
sin

θ

2
eiφeiωt − cos

θ

2
sin

θ

2
eiφe−iωt|2

= cos2
θ

2
sin2 θ

2
(2 − 2 cos 2ωt) = sin2 θ sin2 ωt, (10.76)

which agrees with Eq. (10.75).


