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Abstract. Many physics-based numerical models produce a
gridded, spatial field of forecasts, e.g., a temperature “map”.
The field for some quantities generally consists of spatially
coherent and disconnected “objects”. Such objects arise in
many problems, including precipitation forecasts in atmo-
spheric models, eddy currents in ocean models, and models
of forest fires. Certain features of these objects (e.g., location,
size, intensity, and shape) are generally of interest. Here, a
methodology is developed for assessing the impact of model
parameters on the features of forecast objects. The main in-
gredients of the methodology include the use of (1) Latin
hypercube sampling for varying the values of the model pa-
rameters, (2) statistical clustering algorithms for identify-
ing objects, (3) multivariate multiple regression for assessing
the impact of multiple model parameters on the distribution
(across the forecast domain) of object features, and (4) meth-
ods for reducing the number of hypothesis tests and control-
ling the resulting errors. The final “output” of the method-
ology is a series of box plots and confidence intervals that
visually display the sensitivities. The methodology is demon-
strated on precipitation forecasts from a mesoscale numerical
weather prediction model.

Copyright statement. The author’s copyright for this publication is
transferred to the University of Washington.

1 Introduction

Complex, physics-based numerical models of natural phe-
nomena often have parameters – henceforth, model param-
eters – whose values are generally not a priori specified. In
such situations it is important to infer the manner in which

the model parameters affect the outputs of the model (i.e.,
forecasts or predictions), and often the techniques of sen-
sitivity analysis (SA) are employed to assess the effects.
There is a wide range of techniques from a relatively simple
one-at-a-time method (also known as the Morris method) in
which each model parameter is varied individually (e.g., Yu
et al., 2013) to multivariate approaches motivated by statisti-
cal methods of experimental design (Montgomery, 2009) in
which the values of the model parameters are varied accord-
ing to some optimization criterion. Alternative approaches
can be found in Backman et al. (2017) in which algorithmic
differentiation is used and in Kalra et al. (2017) in which the
underlying physics equations are integrated using quadrature
methods. And yet another alternative is the adjoint method
commonly used in meteorological circles (Errico, 1997).

It is difficult to classify the various methods into a simple
taxonomy (Bolado-Lavin and Badea, 2008), but the terms lo-
cal and global have been used to denote two broad categories
(Saltelli et al., 2010, 2008); generally, local methods employ
some sort of derivative of the model output with respect to in-
puts, while global techniques rely on a decomposition of the
variance of the output in terms of the variance explained by
the inputs. Comparisons of the various approaches are not
commonplace because each approach is usually suited for
a specific application for which other methods may not be
practically feasible. However, an example of the comparison
of one global approach and one local (adjoint) approach on
the Lorenz ’63 model (Lorenz, 1963) has been performed by
Marzban (2013).

Another possible classification criterion is based on the
purpose of the SA. Some SA work is performed for assess-
ing how model parameters impact the model itself, not as a
means to some other goal. For example, Lucas et al. (2013)
use a global SA method to explore the effect of model pa-
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2 C. Marzban et al.: Object-oriented sensitivity analysis

rameters on the probability of model crashes. By contrast,
sometimes SA is performed as an intermediate step to an-
other goal, such as the calibration of the model (Safta et al.,
2015; Hacker et al., 2011; Laine et al., 2012; Ollinaho et al.,
2014). All of these classification criteria are imperfect, as
there are works that fall “between” global versus local or
SA-only versus SA-for-calibration; some examples include
Roebber (1989), Roebber and Bosart (1989), and Robock
et al. (2003). The work reported here falls into the local and
SA-only category; as such, although the proposed methodol-
ogy can be used for calibration, no attempt is made to do so
here.

In many SA studies, the output of the model (i.e., the re-
sponse variable in the SA) is usually a single or a handful of
scalar quantities. But there are situations in which the output
is a gridded spatial field, e.g., temperature forecasts over a
spatial region. Every grid point reflects a forecast at that lo-
cation, and for a quantity like temperature the field as a whole
has a smooth, continuous nature. SA is more complicated for
precipitation fields in which the model output is a quantity
whose spatial structure is not smooth and/or continuous. In-
deed, there may be a coherent set of grid points that receive
no precipitation at all, while an adjacent set of grid points
will reflect a complex pattern of precipitation. In short, the
spatial field of such quantities will contain “objects” within
which precipitation does occur surrounded by regions of lit-
tle or no precipitation. Such objects arise in a wide range
of Earth systems, e.g., models of ocean currents and eddies
(e.g., Fig. 1 in Samsel et al., 2015), atmospheric plume and
dispersion (e.g., Fig. 4 in Stein et al., 2015), ocean garbage
transport (e.g., Fig. 2 in Froyland et al., 2014), forest fires
(e.g., Fig. 8 in Vogelmann et al., 2011), and models of the
Earth’s mantle (e.g., Fig. 4 in French et al., 2013).

For such discrete fields, the assessment of the quality of
the forecasts has given rise to a wide range of specialized
techniques generally referred to as spatial verification (or
evaluation) (Ahijevych et al., 2009; Baldwin et al., 2001,
2002; Brown et al., 2002; Casati et al., 2004; Davis et al.,
2006a, b; Du and Mullen, 2000; Ebert, 2008; Ebert and
McBride, 2000; Gilleland et al., 2009; Hoffman et al., 1995;
Keil and Craig, 2007; Marzban and Sandgathe, 2006, 2008;
Marzban et al., 2008, 2009; Nachamkin, 2004; Roberts and
Lean, 2008; Wealands et al., 2005; Wernli et al., 2008; Venu-
gopal et al., 2005; Li et al., 2015). A subset of these methods
employs the notion of an object explicitly. In some applica-
tions, the object is defined subjectively, for example by ex-
perts. In other applications statistical methods for clustering
(Everitt, 1980) are used to identify and define objects within
the field (Marzban and Sandgathe, 2006, 2008). This cluster-
ing approach, which has been reexamined by Lakshmanan
and Kain (2010) and more recently by Wang et al. (2015),
is the basis of the object-identification procedure used in the
present work.

Although no spatial verification or evaluation is done here,
the importance of objects within the forecast field calls for

an SA framework wherein one can assess the effect of model
parameters on features of the objects. Also, the assessment
of sensitivity is highly intertwined with that of statistical sig-
nificance. The methodology developed here can be viewed
as an object-based SA with which one can assess the impact
(both the magnitude and the statistical significance) of model
parameters on object features.

More specifically, the next section describes the main
components of the proposed methodology, namely Latin hy-
percube sampling for determining how the model parameters
are varied (Sect. 2.1) and the use of clustering algorithms
for identifying objects in the forecast field (Sect. 2.2). The
object features examined here, generally of interest in many
applications, include size, location, intensity, and shape, all
of which can be readily estimated from the forecasts directly
(Sect. 2.3). Section 2.4 describes multivariate multiple re-
gression for assessing the impact of the model parameters
on the distribution (across the forecast domain) of object fea-
tures. Anticipating the problems associated with multiple hy-
pothesis testing, steps are taken to first reduce the number
of tests and then to control different error rates (Sect. 2.5).
Ultimately box plots and confidence intervals are used to vi-
sually display the daily variability of the sensitivities. Sec-
tion 2.6 summarizes all of these components and is followed
by a demonstration of the methodology on forecasts from
a weather prediction model (Sect. 3). The paper ends with a
statement of the conclusions, additional discussion, and ways
in which the methodology can be generalized (Sect. 4).

2 Method

2.1 Data

The numerical model employed to demonstrate the method-
ology is COAMPS® (Hodur, 1997), for which some SA work
has already been done. Doyle et al. (2011) and Jiang and
Doyle (2009) examine the effect of model parameters on
mountain waves. Motivated by the work of Holt et al. (2011),
who studied the effect of 11 model parameters on various
characteristics of the forecasts, Marzban et al. (2014) used a
global, variance-based SA to study the effect of the same pa-
rameters and their interactions on the mean (across the fore-
cast domain) and the center-of-gravity of precipitation. By
contrast, here the effect of the model parameters is assessed
on features of objects within the forecast field. As discussed
in Sect. 2.3, a total of six features are examined, together
summarizing the location, intensity, and the shape of each
object.

These 11 parameters are the inputs to the numerical model,
and the outputs are forecasts of precipitation at each of 45
×72 grid points with a spacing of 81 km and covering the
entire continental US, including coastal regions, and portions
of Canada and Mexico. The SA method developed here re-
quires data – technically, computer data – which are created
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Table 1. The 11 parameters studied in this paper. Also shown are the default values and the range over which they are varied.

ID Name (unit) Description Default Range

1 delt2KF (◦C) Temperature increment at the LCL for
KF trigger 0 −2, 2

2 cloudrad (m) Cloud radius factor in KF 1500 500, 3000

3 prcpfrac Fraction of available precipitation in KF,
fed back to the grid scale 0.5 0, 1

4 mixlen Linear factor that multiplies the mixing length
within the PBL 1.0 0.5, 1.5

5 sfcflx Linear factor that modifies the surface fluxes 1.0 0.5, 1.5

6 wfctKF Linear factor for the vertical velocity
(grid scale) used by KF trigger 1.0 0.5, 1.5

7 delt1KF (◦C) Another method to perturb the temperature
at the LCL in KF 0 −2, 2

8 autocon1 (kg m−3 s−1) Autoconversion factors for the microphysics 0.001 1× 10−4, 1× 10−2

9 autocon2 (kg m−3 s−1) Autoconversion factors for the microphysics 4× 10−4 4× 10−5, 4× 10−3

10 rainsi (m−1) Microphysics slope intercept parameter for rain 8.0× 106 8.0× 105, 8.0× 107

11 snowsi (m−1) Microphysics slope intercept parameter for snow 2.0× 107 2.0× 106, 2.0× 108

KF: Kain–Fritsch, PBL: planetary boundary layer, LCL: lifted condensation level

by generating an ensemble (or sample) of input values, as-
similating surface observations, and then running the model
forward to produce 24 h forecasts of precipitation amount at
each grid point. As such, the SA results are contingent on the
nature of these data, and consequently care must be taken in
the data-generation step of the methodology.

The data used for the SA must be representative of the
range of the phenomena observed at large. To that end,
the present application involves a wide range of weather
phenomena spanning 120 days from 16 February through
2 July 2009. Confirmed by visual examination of all 120
forecasts, this temporal period includes a comprehensive
series of midaltitude synoptic systems traveling across the
northern portion of the domain. These synoptic systems ex-
tend down into the southeastern US early in the period and
are replaced by subtropical convective systems in the late
spring and summer months. This subtropical activity also oc-
curs in the southwestern portion of the domain (west coast of
Mexico) during June and July in association with the south-
west monsoon. The only apparent atypical weather appears
to be a greater amount of convective activity off the east coast
of the US associated with quasi-stationary or slow-moving
frontal systems during the period.

It is important that the data cases are as independent as
possible. To that end, the 120 days are sampled at 3-day in-
tervals in order to minimize temporal dependency, leading to
40 days for the analysis.

For each of the 40 days, 99 different values for 11 parame-
ters are generated by Latin hypercube sampling (LHS). Said
differently, for each day, a sample of size 99 is taken from the
11-D space of the model parameters. This so-called “space-
filling” sampling scheme ensures that no 2 of the 99 points
have the same value for any of the 11 parameters. It can
be shown that this property leads to more precise estimates
(at least, no less-precise estimates) than many other sam-
pling schemes (Cioppa and Lucas, 2007; Montgomery, 2009;
Marzban, 2013). LHS is appropriate when the model param-
eters are all continuous quantities (i.e., taking values on the
real line). For discrete or categorical inputs, Latin square de-
signs or fractional factorial designs can be employed to pro-
duce optimal samples (Montgomery, 2009); these methods
will be demonstrated in a separate article.

Given that daily variability is a common source of variabil-
ity in models dealing with Earth systems, one question that
arises is whether one should use a given LHS sample for all
days in the analysis. Here, in order to explore a larger portion
of the model parameter space, the LHS sample is allowed to
vary across each of the 40 days in the study. Although this
choice confounds variability due to model parameters with
daily variability, it is arguably a better choice than the alter-
native (of using the same LHS sample across all days) be-
cause the final sensitivity results will not be contingent on a
given LHS sample.

The 11 model parameters are shown in Table 1; the choice
of these parameters is explained in Holt et al. (2011). As
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mentioned in that paper, these parameters were chosen for
their anticipated sensitivity (through model tests and discus-
sions with developers) of the parameterizations in an effort
to choose parameters most likely to produce changes in the
model output precipitation fields. Also, to focus on heavy
precipitation, only the grid points whose convective precip-
itation amount exceeds the 90th percentile of precipitation
across the domain are analyzed.

2.2 Cluster analysis

There is a wide range of clustering methods, each with their
respective parameters (Everitt, 1980). At one extreme, there
is a class of clustering methods wherein the desired number
of clusters, NC, is specified by the user. A proven example in
this class is called Gaussian mixture model (GMM) cluster-
ing (McLachlan and Peel, 2000). At the other extreme, there
are clustering routines in which NC does not play a role at all.
One such method is called density-based spatial clustering of
applications with noise (DBSCAN) (Ester et al., 1996). DB-
SCAN has two parameters, here denoted ε and min_samples.
Roughly speaking, ε is the maximum distance between two
grid points in order for them to be in the same cluster, and
min_samples is the minimum number of grid points neces-
sary to form a cluster.

Here, these two approaches are selected for demonstration
because they allow for two very different ways in which a
user can inject a priori knowledge into the analysis. For ex-
ample, in some applications it may be more natural to spec-
ify the number of clusters, in which case GMM is a natural
choice. On the other hand, DBSCAN is more natural if the
user has knowledge of the typical size and distance between
clusters. For example, consider a situation wherein the grid
spacing is relatively large (as is the case in this paper, i.e.,
81 km), allowing one to examine only large-scale precipita-
tion. Although time of year and location are also important,
if one were to focus only on winter months in, say, the Pacific
Northwest, then it is reasonable to set ε to 3 or 4. By contrast,
if one is considering jet streaks, e.g., where some maximum
wind speed value is reached, then ε can be closer to 1. As
for min_samples, 4 or 5 is a reasonable value for both pre-
cipitation and jet streak events at the model resolution used
here.

In addition to the way in which the respective parameters
are handled, another reason why these two clustering meth-
ods are used here is that they occupy two other extremes in
the family of clustering algorithms: GMM clustering belongs
to a class of model-based algorithms (Banfield and Raftery,
1993; Fraley and Raftery, 2002) common in statistics circles
because they are conducive to performing statistical tests,
while DBSCAN assumes no underlying model and for this
reason is often employed in machine learning applications.

For the SA component of the methodology developed
here, it is not necessary for the objects to be defined by these
or any other clustering algorithm; the objects may be defined

by any other criterion or even by experts. But some gen-
eral guidance on the available options may be in order. As
mentioned previously, some algorithms require the specifica-
tion of the number of clusters (e.g., GMM), while others re-
quire information on the desired size and/or distance between
clusters (e.g., DBSCAN). There is another class of cluster-
ing algorithms wherein no such specification is required; an
example of this type is hierarchical agglomerative cluster-
ing (Everitt, 1980), wherein the procedure begins by assign-
ing each of N points to a unique cluster and then proceeds
by combining the clusters systematically until all points are
members of a single cluster. As such, this algorithm allows
the number of clusters to vary systematically from N to 1.
A variation on this routine involves the reverse procedure
wherein the number of clusters is varied from 1 to N . The
clustering results may depend on the choice of these proce-
dures, and so for any specific problem some trial-and-error
experimentation is recommended.

In clustering algorithms that rely on a notion of distance,
there are two types of distance that must be distinguished,
generally referred to as intra-cluster and inter-cluster. The
former refers to the distance between any two points, while
the latter gauges the “distance” or similarity between two
clusters. On gridded fields, the notion of an intra-cluster
distance is itself ambiguous; two common choices are the
Euclidean distance (defined by the Pythagorean theorem)
and the Manhattan distance (defined by the sum of the grid
lengths connecting two grid points). Although the resulting
clusters do depend on the choice of this distance measure,
the former generally lead to smaller and more distant clus-
ters. Here, in DBSCAN, the Euclidean intra-cluster distance
is used; GMM does not involve the notion of an intra-cluster
distance.

In clustering algorithms that involve the notion of an inter-
cluster distance, some consideration must be given to at least
three common measures: (1) the group average distance (de-
fined as the average of the intra-cluster distances between
all the points across two clusters), (2) the distance between
the closest grid points across the two clusters, and (3) the dis-
tance between the farthest grid points across the clusters. The
last two options are often called SLINK (for shortest or single
link) and CLINK (for complete link), respectively. Again, the
final clustering results may depend on the choice of this dis-
tance, but CLINK generally results in tightly packed, small
clusters. By contrast, SLINK leads to long and thin clus-
ters. A comparison of these distance measures in the clus-
tering of precipitation forecasts is performed in Marzban and
Sandgathe (2006). GMM and DBSCAN do not employ a no-
tion of inter-cluster distance.

Given that all of the abovementioned choices may affect
the final clustering result and the fact that the notion of an
object is user dependent, no specific choice is recommended
here. A similar philosophy is adopted with respect to the val-
ues of the parameters of the clustering algorithms; they may
be specified by the user or varied across a range of values de-
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pending on the specific application. Although there are statis-
tical criteria that lead to unique values for the parameters, the
criteria involve the optimization of some other quantity, e.g.,
Akaike information criterion (AIC) or Bayesian information
criterion (BIC). As such, the ambiguity in the choice of the
clustering algorithm or the values of their parameters is sim-
ply replaced with the ambiguity of selecting the appropriate
criterion. Therefore, again, no attempt is made to optimize
the values of the parameters. It is assumed that the user has
sufficient information about the underlying physics to either
specify the number of physical objects (or a range thereof) or
the typical size and distance between physical objects.

2.3 Cluster features

In spatial verification some of the errors that are of interest
include displacement, intensity, size and area, and shape er-
ror. The estimation of these errors presumes the ability to
compute the location, intensity, area, and shape of a cluster,
respectively. Here, the latitude and longitude of the centroid
of a cluster are taken as coordinates of its location, intensity
is measured by the median (across the spatial extent of the
cluster) of precipitation, and area is measured by the number
of grid points in a cluster. The shape of a cluster in GMM is
an ellipse because that is the cross section (i.e., level set) of a
bivariate Gaussian. Then, the eccentricity and orientation of
the semi-major axis of the ellipse are natural for quantifying
the shape of clusters. In DBSCAN, clusters are not restricted
to have any specific shape. In order to be able to compare
the two clustering algorithms, here an elliptical shape is as-
sumed for the clusters, and the eccentricity and orientation
are obtained from the first and second eigenvectors of the
covariance matrix computed from the coordinates of all the
grid points in a given cluster. The length of the semi-major
axis is set to the largest eigenvalue. The ability to estimate
the shape of the ellipse from the covariance matrix is an im-
portant component of the methodology because the alterna-
tive of fitting curves through the edges of clusters is a much
more complicated task. This covariance matrix is central to
the construction of many other features of potential interest
(Bookstein, 1991).

In short, the six cluster features examined here are latitude,
longitude, intensity, area, orientation, and eccentricity. It is
worth reiterating that these quantities can be estimated from
the forecast field directly without any further modeling of
the objects. Also, as explained in the next section, in order
to assess how the distribution (across the forecast field) of a
given feature is affected by the model parameters, the former
is summarized with three moments: minimum, median, and
maximum.

2.4 Statistical model

The SA methodology in Marzban et al. (2014) is a variance-
based approach that allows one to identify linear or nonlinear

relationships between the forecast quantities and the model
parameters and even interactions between the model param-
eters. As a first approximation, however, it is sufficient to
estimate only the linear (i.e., main) effects because nonlin-
ear and interaction effects are often much smaller than main
effects; see, for example, pages 192, 230, 272, 314, and 329
in Montgomery (2009) and pages 33–34 in Li et al. (2006).
For this reason a linear regression-based model is adequate.
Specifically, the effect of the model parameters is assessed
via the least-squares estimate of the regression coefficients
βi in

y = α+β1x1+β2x2+ . . .+β11x11+ δ , (1)

where xi denotes standardized model parameters, y is some
cluster feature, and δ represents any source of variability in
y other than from the model parameters. This linear model is
further justified by the results (shown below) because when
it is specialized to the case of one cluster (i.e., the entire spa-
tial domain), it reproduces the results of the variance-based
approach reported in Marzban et al. (2014).

There is a realization of Eq. (1) in which the response is
vector valued; the model is called multivariate multiple re-
gression (MMR), wherein Eq. (1) is understood as a vector
equation in which y, α, and βi are all vectors (Fox et al.,
2013; DelSole and Yang, 2011; Rencher and Christensen,
2012). Ideally one could allow each component of the re-
sponse vector to represent a forecast feature of a given object.
However, the number of objects and clusters varies across
the 99 values of the parameters and across days in the data.
Methods for estimating MMR coefficients when the num-
ber of responses is a random variable (varying across cases)
are not readily available. Therefore, for each of the six fea-
tures measuring location, intensity, and shape, three sum-
mary measures are considered: the minimum, median, and
maximum (across the clusters in the domain) of the feature.
These three quantities can be thought of as a 3-point sum-
mary of the distribution (technically, histogram) of the fea-
ture, and they serve as the three responses in MMR. In short,
the statistical model used here is ymin

d

ymed
d

ymax
d

=
 αmin

d

αmed
d

αmax
d

+
 βmin

1,d
βmed

1,d
βmax

1,d

x1,d (2)

+

 βmin
2,d
βmed

2,d
βmax

2,d

x2,d + ·· ·+

 βmin
11,d
βmed

11,d
βmax

11,d

x11,d (3)

+

 δmin
d

δmed
d

δmax
d

 , (4)

where min, med, and max denote the minimum, me-
dian, and maximum (across clusters), respectively, and d =
1,2, . . .40 days. In this equation, the index corresponding to
the 99 samples, across which the regression is performed, has
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been suppressed. As mentioned previously, the 99 samples
of the 11 model parameters are allowed to vary across the
40 days – hence the d subscript on the x variables in Eq. (2).

In addition to serving as a 3-point summary of the dis-
tribution of features, the minimum, median, and maximum
also serve another purpose; the median is useful because one
can assess the effect of the model parameters on a “typical”
cluster, and the minimum and maximum across clusters are
useful because they allow one to assess whether a model pa-
rameter has an effect on any of the clusters in a field. For
example, if it is found that a particular model parameter is
positively (negatively) associated with the minimum (max-
imum) size across clusters, then one can conclude that the
size of at least one of the clusters in the field is affected by
that parameter. This is an important consideration because if
the size of at least one of the clusters is not affected by a pa-
rameter, then that parameter can be said to have no effect on
the size of clusters.

One may wonder why it is important to use MMR with
three responses as opposed to three single-response multiple
regression models; it is easy to show that the latter ignores
the correlation between the response variables (Fox et al.,
2013; Rencher and Christensen, 2012). As such, MMR pro-
vides a better model of the underlying relationship between
the model parameters and the response variables.

The data on the response variables y are log transformed
to assure more bell-shaped histograms; this transformation is
not necessary, but is useful when the regression coefficients
are subjected to statistical tests because many such tests as-
sume relatively bell-shaped distributions.

2.5 Significance tests

Testing the coefficients in the MMR model involves perform-
ing a large number of statistical tests (40× 11× 6× 3): one
on each of 40 days, for each of 11 parameters, for each of
six cluster features, and for each of three summary measures
across clusters. A large number of tests, in turn, leads to an
exponential growth in the probability of making some Type I
error. In general, the increase in the probability of making er-
rors associated with multiple tests is known as the multiple
hypothesis testing problem (Benjamini and Hochberg, 1995;
Bretz et al., 2001; Dmitrienko et al., 2009; Montgomery,
2009; Rosenblatt, 2013; Wilks, 2011). There are several pro-
cedures for addressing this problem, and they all involve two
ingredients: (1) a set of “raw” p values resulting from multi-
ple hypothesis tests and (2) the specification of an error rate
to be controlled. Then, the p values are corrected (usually
scaled) in order to control the error rate. Two common mea-
sures of error rate are the family-wise error rate (FWER),
defined as the probability of at least one Type I error, and the
false discovery rate (FDR), which is the expected proportion
of Type I errors among all the tests that lead to the rejec-
tion of the null hypothesis. One of the simplest procedures
for correcting the p values involves simply multiplying all of

the p values by the number of tests and then comparing these
corrected p values with a fixed significance level (e.g., 0.05).
This correction controls the FWER and is called the Bonfer-
roni correction (Bretz et al., 2001; Wilks, 2011). One of the
popular procedures for controlling the FDR, as introduced in
Benjamini and Hochberg (1995), similarly involves scaling
each p value but by a quantity that depends on the rank of
the p value. The choice of the error rate to be controlled is
sometimes evident from the nature of the problem (Rosen-
blatt, 2013), but not in the present case; for this reason, both
corrections are examined.

Quite independently of the above methods for controlling
the errors arising from the multiplicity of tests, there is a pro-
cedure that is often practiced when one is faced with multiple
hypothesis tests. The main goal of the procedure is to reduce
the number of tests performed, and it is generally possible
to do so in tests that involve linear models (Montgomery,
2009). In the first stage of the procedure, one performs a sin-
gle, often-called omnibus, hypothesis test of whether any of
the predictors (here, model parameters) in the linear model
have an effect on any of the responses. If the null hypothesis
cannot be rejected, then no more tests are performed, and the
conclusion of the analysis is that there is no evidence that any
of the parameters have an effect on any of the responses. If,
however, the null hypothesis is rejected, then, and only then,
one proceeds to the second stage of testing the significance
of each of the parameters separately.

In the present application, the omnibus test used in the first
stage is called the Pillai’s trace test (Fox et al., 2013; Rencher
and Christensen, 2012), and its use reduces the total number
of tests from 40×11×6×3 to only 40×6. Here, both FWER-
and FDR-controlling corrections to these p values are exam-
ined. The second stage of the aforementioned procedure calls
for testing the effect of each of the model parameters sepa-
rately, but only for those comparisons that have been found
significant in the first stage. However, here for the this sec-
ond stage, no hypothesis testing is performed at all because in
spite of the plethora of p values they provide no information
on the magnitude of the effect of each parameter. Instead, in
the second stage, we examine the box plot of the estimated
regression coefficients and the associated confidence inter-
vals.

The box plots are generated and interpreted as follows. For
each of the six cluster features and for each of the three sum-
mary measures (minimum, median, and maximum across
clusters in the whole field), box plots of the regression co-
efficients for the 11 model parameters are produced. The de-
gree of overlap between each box plot and the number zero
reflects a visual (though qualitative) assessment of both the
statistical significance and the magnitude of the effect of the
corresponding model parameter on the response. If zero is
well within the span of the box plot, then one cannot con-
clude anything regarding the effect; if the box plot is signif-
icantly above (below) zero, then one can conclude that the
corresponding parameter has a positive (negative) effect on
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Figure 1. The flowchart highlighting the main components of the methodology.

the response in question. In such a case, the “distance” of the
box plot relative to zero provides a visual indication of the
magnitude of the effect.

The confidence interval for the mean (across 40 days) of
the regression coefficient is computed from the estimates of
the daily regression coefficients and their standard errors, all
computed within MMR. Given that each of the aforemen-
tioned displays in the final “output” of the methodology in-
volves 11 CIs, a Bonferroni correction is introduced in order
to ensure that FWER is maintained at 5 %. The interpretation
of the CIs is similar to that of the box plots. If a CI excludes
the number zero, one can reject the null hypothesis of no ef-
fect with (at least) 95 % confidence; otherwise, there is no
evidence to draw any conclusion. The overall position of the
CI conveys information on the magnitude of the effect.

A brief discussion of the advantages and disadvantages of
the box plot and the confidence interval (CI) is in order. The
box plot can be considered to provide a 5-point summary
of the empirical sampling distribution of a regression coef-
ficient. The sampling distribution is more fundamental than
the CI (and the p value) in the sense that the latter is de-
rived from the former, and as such, the sampling distribution
contains more information. However, this additional infor-
mation comes at the cost of less rigor because hypothesis
testing with box plots is inherently qualitative. CIs introduce
a more rigorous display, but they too have some limitations.
For example, whereas hypothesis testing with box plots does
not require a notion of a confidence level, CIs depend ex-
plicitly on that notion. Furthermore, analysis of multiple CIs
suffers from the same problems that arise in multiple hypoth-
esis testing with p values (see Sect. 2.5). Another limitation
of CIs is that they are generally symmetric and so do not
convey information on the shape (e.g., skew) of the under-
lying distribution – box plots do; see the Discussion section
for other alternatives. Given the different trade-offs between
box plots and CIs, both are used here. Consequently, the fi-
nal output of the methodology will consist of a figure involv-

ing 11 box plots and CIs (one per model parameter) for each
of six forecast features and three summary measures (mini-
mum, median, maximum) thereof.

2.6 Summary of method

This subsection summarizes the main ingredients of the pro-
posed methodology and the associated problems (and solu-
tions) that arise in an object-based SA. See the flowchart in
Fig. 1.

In SA, when the model parameters are continuous, a com-
mon method for varying them is LHS. It is important to point
out that in models wherein daily variability is present, it is
advisable to allow the LHS to vary across days.

The model, here COAMPS, is then run for each of the
model parameter values in the LHS, and each of the gener-
ated forecast fields is subjected to cluster analysis for the pur-
pose of identifying objects in the forecast fields. The choice
of the clustering algorithm is an important consideration.
Some users may wish to use algorithms in which the number
of objects is specified, while others may find it more natural
to specify the typical size and/or distance between objects.
GMM and DBSCAN are examples from each category. Yet
other users may wish to examine all possible clusterings of a
field, in which case a hierarchical method is more advisable.

After the objects have been identified, one must decide
what object features are of interest. Features that can be esti-
mated directly from the forecast field without further model-
ing are desirable. The six features proposed here are all read-
ily computed from the forecast field and its spatial covariance
matrix.

Given the variability of the object features across the fore-
cast domain, it is then important to assess the effect of the
model parameters on the distribution of object features be-
cause the model parameters affect the various objects within
a forecast field in different ways. As such, assessing the effect
of model parameters on the distribution of features presents
a more complete picture of sensitivities than point estimates.
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Here, a 3-point summary of the distribution is considered:
the minimum, median, and maximum.

The question then arises as to how to model the effect of
the model parameters on that distribution. Here, it is shown
that MMR, with multiple responses corresponding to differ-
ent moments of the distribution of a features, constitutes an
elegant solution. Most notably, MMR allows for omnibus
tests of statistical significance that dramatically reduce the
number of hypothesis tests. Other steps are also taken to con-
trol the error rate associated with multiple hypothesis test-
ing. Then, for each day (d = 1, . . .40), the MMR coefficients
βmin
i,d ,β

med
i,d ,β

max
i,d , with i = 1, . . .11, provide estimates of the

impact of the ith parameter on the distribution of cluster fea-
tures.

Finally, given the importance of assessing daily variabil-
ity (at least in the present application), it is proposed that
displaying the box plot of the sensitivities (i.e., the β val-
ues) across days is more useful than reporting p values. Such
box plots, although more qualitative than p values, are more
effective in visually displaying both the magnitude and the
variability of the sensitivities. Additionally, CIs are also dis-
played for the purpose of rendering the analysis somewhat
less qualitative; see the Discussion section for further alter-
natives.

3 Results

As mentioned previously, 24 h forecasts are produced for
40 days, each with 99 different values of 11 parameters in
COAMPS. Each forecast field is clustered, and three sum-
mary measures (minimum, median, and maximum, all across
clusters) are computed, each for six cluster features (lati-
tude, longitude, intensity, area, orientation, and eccentricity).
First, an omnibus test is performed to test whether any of the
11 parameters have an effect on any of the three summary
measures on each day and for each cluster feature. Then, six
MMR models are set up mapping the 11 parameters to three
response variables. The daily variability – displayed as box
plots and confidence intervals – for each of the regression
coefficients offers a visual assessment of both the statistical
significance and the magnitude of the effect of each parame-
ter.1

The possibility of performing omnibus tests in MMR re-
duces the number of tests from (40×11×6×3) to (40×6)=
240. The individual p values are not shown here, but for DB-
SCAN their histogram is shown in Fig. 2. Evidently, all of
the comparisons yield extremely small p values. At a signif-
icance level of 0.05, out of the 240 tests, 53 p values are not
significant when using DBSCAN and 67 are not significant
when using GMM. To emphasize the importance of this re-
sult, consider the hypothetical situation in which all of these
p values were found to be not significant. In that case, no

1Detailed results on clustering are available; they are suppressed
here only to focus on the object-based SA methodology as a whole.

Figure 2. Histogram of p values from the omnibus tests across all
days and response variables.

further hypothesis testing would be necessary at all. Indeed,
an examination of the individual p values displayed in Fig. 2
reveals that a vast majority of the nonsignificant results are
associated with the tests when the feature is the eccentricity
of an object. As such, one may anticipate that none of the
parameters have any effect on eccentricity. The smallness of
the remaining p values, however, calls for proceeding to the
second stage of analysis.

The Bonferroni correction for controlling the FWER re-
quires multiplying all of the p values by the number of tests
(i.e., 240). This correction leads to many more nonsignificant
comparisons: 129 for DBSCAN and 111 for GMM. Upon
making this correction, in addition to eccentricity some of the
other features also emerge as being unaffected by any of the
11 parameters. Further details of these results are presented
below. When the Benjamini and Hochberg (1995) procedure
is applied to control FDR, the number of nonsignificant com-
parisons is similar to those from the uncorrected tests, i.e., 60
for DBSAN and 74 for GMM.

As mentioned previously, although these rigorous consid-
erations based on p values are important to ensure that the
number of false alarms is tamed, it is equally useful to exam-
ine the box plot summary of the empirical sampling distri-
bution and CIs of the effects. Figure 3 shows the sensitivity
results when the response is the median (across clusters) of
precipitation intensity and DBSCAN is employed with dif-
ferent parameters. The analogous results for GMM with dif-
ferent values of NC are not shown here, but they are similar.
Recall that the variability displayed in each box plot is due
to the 40 days examined. First, note that all of the panels are
mostly similar to one another, which implies that the sensi-
tivity results are mostly unaffected by the parameters of the
clustering algorithm.
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Figure 3. Estimated regression coefficients (i.e., the sensitivity of the model parameters) with median precipitation of the clusters as the
response, after clustering with DBSCAN with various parameter values. The red symbols are 95 % simultaneous CIs.

It can also be seen that many of the 11 parameters have a
box plot of values mostly around zero. In other words, when
considered across multiple days most of the 11 model param-
eters have no effect on the median of precipitation. The most
obvious exception is parameter 3, which by virtue of having
mostly negative values for its regression coefficient is nega-
tively associated with median precipitation. Parameter 7 not
only has a weaker effect (because the median of the corre-
sponding box plot is closer to zero), but it is also not as sta-
tistically significant (because zero falls well within the span
of the box plot). This parameter is positively associated with
precipitation intensity in the typical (median) cluster; i.e., in-
creasing the parameter leads to more intense clusters (more
details below). The conclusions drawn from an analysis of
the CIs in Fig. 3 are the same.

All of these findings are consistent with those found for
convective precipitation in Marzban et al. (2014) in which a
variance-based sensitivity was performed without any clus-
tering at all. This consistency adds justification to the local
and/or regression-based SA adopted here, i.e., Eq. (2). It is
important to point out that this consistency does not imply
that an object-based SA offers nothing more than traditional
non-object-based SA; the former assesses the sensitivity of
object features, which is something that cannot be done in
the latter.

Figure 4 shows the effect of the model parameters on the
latitude and longitude of the clusters (top two rows), the
amount of precipitation (middle row) in the clusters, and the
area and orientation of the clusters (bottom two rows). The
three columns correspond to the minimum, median, and max-
imum of a feature. Eccentricity has also been examined, but
the results are not shown here because it is not affected by
any of the 11 parameters; this conclusion is consistent with
the results of the omnibus tests performed in the first stage,
as mentioned above.

Examination of all of the panels suggests that parameters
4, 5, 8, 9, 10, and 11 have little or no effect on any of the ob-
ject features. By contrast, parameters 1, 2, 3, 6, and 7 appear
to have varying effects depending on the object feature. Also,
the orientation (in addition to the eccentricity) of the clusters
is unaffected by any of the parameters.

The strongest effects are from parameters 3 and 7 on the
amount of precipitation. This relationship was already exam-
ined in Fig. 3, but now the same pattern can be seen in the
minimum, median, and maximum intensity (panels g, h, i in
Fig. 4), which implies that the effect of parameters 3 and 7 is
to shift down and up, respectively, the whole distribution of
precipitation intensity.

The next strongest effects are those of parameters 1 and 7
on maximum area (panel l). Given that these two parameters
have no effect on the minimum and median area (panels j
and k), it follows that these parameters affect only the right
tail of the distribution of size. In other words, in contrast to
precipitation intensity whose distribution shifts when param-
eter 7 is varied, the distribution of size is stretched when that
parameter changes. Parameter 6, too, appears to have an ef-
fect on maximum area, but to a lesser extent, both statistically
and in magnitude.

Whereas parameter 1 tends to stretch out the distribution
of area to the right, it appears to have the opposite effect on
the minimum and median longitude of the clusters. The effect
is weak in magnitude, but statistically significant. It does not
affect the maximum longitude (panel f), and so it stretches
the distribution of longitude on the left, causing clusters to
appear with smaller longitude, which given the encoding of
the data used here means to the west. Parameters 2, 6, and 7
appear to have the same effect as parameter 1.

The latitude appears to be weakly affected by some of the
parameters. For example, parameter 7, and to a much lesser
degree parameter 1, is positively associated with median and
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Figure 4. Estimated MMR coefficients (i.e., the sensitivity of the model parameters) on three summary measures (minimum, median, maxi-
mum) of different cluster features (latitude, longitude, amount of precipitation, and area and orientation of clusters). Eccentricity is not shown
(see text). The red symbols are 95 % simultaneous CIs. The clustering is done with DBSCAN with ε = 2

√
2 and min_samples= 3.

maximum latitude, but negatively associated with minimum
latitude. In other words, increasing parameter 7 increases the
width of the distribution of latitude values, causing them to
be more spread out along the latitudes.

All of the above conclusions are based on clustering with
DBSCAN with ε = 2

√
2 and min_samples= 3. To test the

robustness of these results the same analysis was repeated but
with GMM as the clustering algorithm and with NC= 3. The
results (not shown here) are mostly the same. One relatively
clear difference between the DBSCAN and GMM results is
in the effect of parameters 1 and 7 on area; whereas with DB-
SCAN those parameters have an effect only on the maximum
area, the results based on GMM suggest a significant effect
on all three distribution summary measures (minimum, me-
dian, and maximum area).

Further differences between DBSCAN and GMM sensi-
tivity results are found when one performs a multivariate test
for the effect of the model parameters across all days. For
DBSCAN, the p values corresponding to each of the six clus-
ter features are all found to be nearly zero. So, some of the
model parameters do have a significant effect on some of the
features. The same is true for GMM, with the exception of
latitude and eccentricity for which there is no evidence of an
effect (p values 0.435 and 0.290, respectively). It may appear
that these results are contradictory, but they are not because
the respective parameters of the two clustering algorithms
have not been tuned to render them comparable. Specifically,
the DBSCAN parameters are ε = 2

√
2 and min_samples= 3,

while for GMM the parameter NC is set to 3. In other words,
the differences are due to the way in which the two cluster-
ing algorithms handle their respective parameters. As men-
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tioned earlier, such differences do not point to defects in the
methodology; they simply reflect the choice of what the user
considers to be an object.

4 Conclusion and discussion

It is shown that by employing methods of cluster analysis and
sensitivity analysis one can assess the magnitude and statis-
tical significance of the effect of model parameters on the
distribution of features (location, intensity, size, and shape)
of objects within forecast fields. For example, one can reveal
the model parameters that affect the overall location and/or
width of the distribution of object features and those that im-
pact the shape of the distribution, e.g., by stretching out the
left and/or right tail. The approach does not point to any “op-
timal” values of the model parameters because that would
require optimizing the model parameters to maximize some
measure of agreement between forecasts and observations.
In other words, although the work here lays the foundation
for tuning the model parameters for the purpose of improv-
ing forecasts in terms of metrics that arise naturally in spatial
verification and evaluation methods, no such tuning is per-
formed here.

It is worth pointing out that at least in meteorology, it is not
uncommon for different experts to have different notions of
an object in the forecast field. As such, the ambiguities dis-
cussed above are not specific to clustering algorithms, but are
inherent to any object-based approach. In spite of this inher-
ent ambiguity, many spatial verification techniques generally
rely on some notion of an object. The main reason is that ac-
counting for objects in a forecast field is a first step in the
verification and evaluation process, and the manner in which
objects are defined is of secondary importance.

While this paper is primarily about a methodology, it is
worthwhile to provide a possible physical explanation for at
least the strongest results in the COAMPS application. The
strongest influence or sensitivity is from parameter 3, the
fraction of available precipitation fed back to the grid from
the Kain–Fritsch scheme. Increasing this fraction reduces
convective precipitation and, based on the results in Marzban
et al. (2014), increases stable precipitation while not affect-
ing total precipitation. It also is responsible for weakening
the convective precipitation, i.e., increasing the number of
weak systems. The next largest sensitivity is from parameter
7, which controls the temperature difference required to ini-
tiate convective precipitation. Again, as shown in Marzban
et al. (2014), this parameter also controls a trade-off between
convective and stable precipitation and has little effect on to-
tal precipitation (along with parameter 1). Parameters 1 and
7 do increase the area of convective precipitation in large
precipitation events but not in smaller (areal) precipitation
events, likely due to the trade-off between stable and con-
vective precipitation in large events such as frontal systems
and mesoscale clusters. This process may also explain the

apparent increase in east–west areal coverage and the inten-
sification of precipitation events, as found here.

Several generalizations of the proposed methodology are
possible. In Marzban et al. (2008) it has been shown that clus-
tering can be done not only in the 2-D space of latitude and
longitude of each grid point, but also in the 3-D space that
includes the amount of precipitation at each grid point. In
fact, one may argue that the inclusion of more meteorological
quantities in the clustering phase ought to lead to more me-
teorologically relevant objects being identified. In turn, this
is more likely to lead to a more realistic representation of the
effect of the parameters on the object features. The object
features may also be extended or revised. For example, here
the shape of an object is approximated by an ellipse. But it is
possible to use more sophisticated methods of shape analy-
sis (Bookstein, 1991; Lack et al., 2010; Micheas et al., 2007;
Lakshmanan et al., 2009) to model more complex shapes.

Another possible generalization is to allow for interactions
between model parameters. Although the statistical model
used here does account for covariance between the model
parameters and between the response variables, no explicit
interaction is introduced. The inclusion of such terms is
straightforward and is unlikely to lead to overfitting, at least
in linear models such as MMR.

The use of box plots (in the second stage) to visually dis-
play the daily variability of the results is necessarily qualita-
tive. But the authors believe that the information provided in
the visual display compensates for the lack of rigor accompa-
nying p values. CIs are more rigorous than the box plots, but
as mentioned previously, that rigor is accompanied by a loss
of some information. However, if even more rigor is called
for, then it is possible to revise the displays accordingly. For
example, one option would be to include a day factor in the
MMR model and then test the model parameters. Although
the daily variability of the β coefficients will be lost, each
model parameter will be accompanied by a p value. Alter-
natively, one may compute Bayesian intervals (Leonard and
Hsu, 1999); such intervals are not necessarily symmetric and
therefore will be able to convey information on the shape
of the underlying sampling distribution. However, they do
require additional information, e.g., some knowledge of the
prior distribution of the β values. All of these options will
render the analysis more quantitative, although with a differ-
ent focus than that emphasized here.2

Code and data availability. The code and the data analyzed
here occupy about 4.0G of computer space and are avail-
able upon request from the corresponding author or from
https://doi.org/10.5281/zenodo.1043542.

2The authors acknowledge an anonymous reviewer for these al-
ternatives.
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