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Abstract

Gandin and Murphy have shown that if a skill score is linear in
the scoring matrix, and if the scoring matrix is symmetric, then in
the 2-event case there exists a unique, “equitable” skill score, namely
the True Skill Score (or Kuipers’ performance index). As such, this
measure is treated as preferable to other measures because of its eq-
uitability. However, in most practical situations the scoring matrix is
not symmetric due to the unequal costs associated with false alarms
and misses. As a result, GM’s considerations must be re-examined
without the assumption of a symmetric scoring matrix. In this note,
it will be proven that if the scoring matrix is nonsymmetric, then there
does not exist a unique performance measure, linear in the scoring ma-
trix, that would satisfy any constraints of equitability. In short, there
does not exist a unique, equitable skill score for 2-category events that

have unequal costs associated with a miss and a false alarm.

1 Introduction

Performance measures or skill scores are often required to be “equitable”
in that their use must not induce the forecasters to make forecasts that
differ from their best judgments. Gandin and Murphy [3], hereafter referred
to as GM, considered measures that are linear in the scoring matrix, and
derived the constraints that must be placed on the scoring matrix in order
to assure the equitability of the measure. In the 2-event case, if in addition
to the derived constraints the scoring matrix is assumed symmetric, then
the number of constraints is equal to the number of elements of the scoring
matrix. This, in turn, allows for the determination of a unique scoring matrix

and, consequently, a unique, equitable measure - the True Skill Score (or



Kuipers’ performance index, among other names). Gerrity [4] expands on
the multi-category considerations of GM and finds a closed formula for a
symmetric, equitable scoring matrix in terms of the marginal probabilities of

the various categories.

However, in most practical situations the scoring matrix is not symmetric.
This occurs not only when the two events have different a priori (climato-
logical) probabilities, but also when the cost (or loss) associated with a false
alarm is different from that of a miss. Therefore, to check for the existence
of a unique, equitable measure GM’s analysis must be re-examined without
assuming that the scoring matrix is symmetric. It is, in fact, possible to
generalize further: GM also assume that constant forecasts of two events
must be assigned equal scores (e.g. zero). However, this assumption is too

restrictive and so it, too, can be relaxed (see the Discussion section).

Specifically, GM asked the following question: what scoring matrix will

yield a performance measure, S, satisfying the following three constraints:
S(constant forecasts) = S(random forecasts) = a,

and

S(perfect forecasts) = 3,

where a and 3 are constants defining a scale for the score? They defined
such a measure as “equitable” and showed that in the 2-event case if the
scoring matrix is further assumed to be symmetric, then there is a unique
measure that satisfies these constraints. The uniqueness of the solution may
be anticipated based on the number of constraints (3) and unknowns (3), but
it is not automatically implied. Unless these constraints yield an independent

set of simultaneous linear equations, an unique solution will not exist.

Relaxing both the assumption of a symmetric scoring matrix and the

equality of constant forecasts, the equitability constraints translate to 4



equations for 4 unknowns. As such, one might anticipate a unique solu-
tion. However, in this note it will be argued that without the assumption of
a symmetric scoring matrix (or any other constraint on the scoring matrix)
there does not exist a unique measure satisfying these or any set of (four)
constraints placed on S. In other words, in most practical situations there is
no unique, equitable measure. Or said differently, there exists no definition
of equitability that would yield a unique measure of performance linear in

the scoring matrix.

2 Preliminaries

Many measures of performance are defined in terms of the elements of the
contingency table. For dichotomous forecasts of two events, labeled as 0 and

1, the contingency table, C', is

C= Noo Ny B # of 0’s predicted as 0 # of 0’s predicted as 1
~\ Ny Ny - # of 1’s predicted as 0 # of 1’s predicted as 1 /’

B . false alarms
o misses hits )

Note that Njy 4+ N;i, represented by N;, is simply the sample size of the :"
observation, and Ny; + Ni; = N, is the number of forecasts of the i'" type
(1=0,1).

The joint probability of forecasts, f, and observations, o, is [6]
P = N;;/N..

where NV, is the total sample size. The two relevant conditional probabilities
are the probability of assigning (forecasting) an observed event from the i’

class (7 = 0,1) into the ;' class ( = 0,1)
p(f = jlo=1) = Nij/Ni. = Qi ,
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and the belief that a class-z event was assigned to class j,
plo=ilf =j)= Nij/N; = Bi; .

The matrices P, (), and B are sometimes called the performance matrix, the

percent confusion matrix, and the belief matrix, respectively.

The class-conditional risks, R;(C'), are given by
Ri(C) =3 LiQij
j

where L;; are the elements of the loss matrix, and Bayes risk [1, 7] is then

defined as
R(C) =3 Ri(C)P =3 LiyQis P (1)
7 ¥

where P; = N; /N.. are the a priori (i.e. climatological) probabilities.

Bayes risk and the loss function are quantities central to the analysis of
performance, and it is evident that the quantity that GM call the expected
score is in fact equal to Bayes risk, and what they call the scoring matrix is
equal to (the transpose) of the loss matrix. In other words, R = S, if the

loss matrix L is identified with (the transpose of) the scoring matrix. *

3 Theorem

The question asked by GM can be asked at a more general level: what loss

matrix yields a measure satisfying constraints of the form
RC*)y=a® E=0,.,n-1, (2)

where n is the number of constraints, and C'*) and a® are the contingency

table and the value of the measure associated with the k" constraint?

!The contingency table in this article is the transpose of that of GM.



Since the (2 x 2) loss matrix has 4 degrees of freedom one would require

4 equations in order to uniquely solve for L;;. For example,

R(f = constant“0”) = a® R(f = constant“1”) = o,
R(f =random) = a® R(f = perfect) = a®

constitute four such constraints. The special case a® = o) = o? is the

one considered by GM.
More generally, however, equation (1) and (2) imply
EL”QE;C)PZ = Oz(k), k= 0, ey 1
'7‘74

where QE;C) is the percent confusion matrix for the k™ constraint, and n is

the number of constraints. For n = 4, this yields

QPR QWP QWP QP || L a9
WP QWP QWP QWP || Lo || oW
o QRr QYr QWP || L | | a®
é%)Po Qéi)Po g?))Pl ﬁ)Pl Ln ol?

Noting the identity Qf»(’j) + fo) = 1,Vk, it 1s then straightforward to show

that the determinant of the 4 x 4 matrix is zero.

Consequently, the system of 4 equations and 4 unknowns is under-determined.
As such, for a general scoring matrix the True Skill Score is no longer uniquely
equitable. Therefore, in practical cases where the scoring matrix has no par-
ticular symmetry, there exists no unique, equitable score. Note that this is
true for any definition of equitability based on the four constraints of the

aforementioned type (equation 2).

Another family of risk functions, or performance measures, can be defined

in terms of the belief matrix, B (instead of percent confusion matrix, Q) [2]:

R =Y Li;B;P; |

0]



but it can be shown that the above theorem applies to R’ as well, because

Boi + By; = 1.

4 Discussion

It is important to point out that the above result is not contained in GM’s
findings. The question asked in this article does partially reduce to that of
GM in the limit a(® = oY) = o(?). However, the number of equations and
unknowns in this article (i.e. 4) is different from that of GM (i.e. 3), and so

there is no smooth limit in which the two questions are related.

The findings herein generalize GM’s results in that several assumptions
made by GM are no longer invoked. Specifically, two independent assump-
tions are made by GM: 1) a(® = oY) and 2) L;; = Lj; (i.e. that the loss

matrix is symmetric). 2

GM motivate the first assumption by arguing that it precludes the fore-
caster from over- or under-forecasting all observations as one event (i.e.
f = 0) or the other event (i.e. f = 1). It is true that such an assumption
would be necessary if the performance measure, R, behaved like the dot-
ted curve in Figure 1, wherein the behavior of a measure is plotted against a
quantity, @, that at its extremes coincides with R(f = 0) and R(f = 1). Two
examples of @) are 1) the percentage of class 1 forecasts that the forecaster
has issued, and 2) the decision threshold that a forecaster must place on a
probabilistic forecast in order to dichotomize the forecasts. More generally,
however, the plot of a measure would have a shape similar to the dashed line
in Figure 1, wherein there is a local maximum marking the “optimal per-

formance.” Indeed, in the case of the second () example it has been shown

2 As pointed out by GM, a(®) = o(1) implies a(?) = o(1) = (2),



Performance Measure, R
T

Figure 1: The generic behavior of R as a function of ).

that most measures behave as such [5]. Of course, the use of such a measure
will still influence the forecaster’s judgment via his attempts to reach the
optimum critical point; however, the asymptotic limits of the measure are
no longer of any concern. Hence, it is not necessary for the constant-forecast
scores to be equal. It is important to emphasize that a truly “equitable”
measure would behave like the solid curve in Figure 1 in that its use would

not induce the forecaster to significantly affect her judgement.

GM motivate the second assumption by emphasising the issue of accuracy,
and requiring the generality of the ultimate results. However, in practice it
is much more likely that the misclassification costs are unequal for the two
classes. For example, the cost associated with missing a tornado is rarely the
same as that associated with making a false tornado forecast. Therefore, the
second assumption is far too stringent to be of any utility in most practical

situations. For these reasons, neither assumption was invoked here.
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