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Abstract

Tornadic activity within the continental United States is modeled as a stochas-
tic process. It is shown that the occurrence of a tornado on a given day is affected
mostly by that of the previous day. In other words, the process appears to dis-
play no memory beyond one day. As such, the process is a Markov chain. The
performance of the model in predicting tornadoes is assessed and is shown to be
marginally superior to a model based on climatological forecasts.
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Figure 1: The number of matches to the phrase “Markov Chain” in the on-line journals
of the American Meteorological Society, for every year from 1970 to 2000.

1 Introduction

Markov Chains have steadily been gaining popularity in meteorological circles. An ex-
act phrase search for “Markov Chain” on the American Meterological Society’s on-line
journals suggests an increasing trend over the past 30 years (Figure 1). The interest,
however, appears to be focused on precipitation, since of the 165 matches, 112 deal with
precipitation, while the remaining few cover a somewhat wide range of applications.
A few examples of the former are the works of Gates and Tong (1976), Hughes and
Guttorp (1995), Katz (1997), Stern (1982), and Valdez and Young (1985). An example
of the latter is the work of Lakshman (2001) in the context of data compression. It is
interesting, though, that the number of matches drops to zero if the word “tornado”

is included in the search.

The topic of Markov Chains is an instance of the larger topic of stochastic mod-
elling or stochastic processes (Guttorp 1996, Kao 1996). A stochastic process is simply
a collection of random variables. The closing price of a stock, or the amount of precip-
itation, at different times ¢ are examples of stochastic processes. Given the generality
of the definition of a stochastic process, it is not surprising that stochastic modeling

has found wide-spread use. Although the price of a stock and the amount of precip-



itation are continuous variables, from a pedogogical view it is far simpler to consider
a stochastic process whose states are discrete. In fact, most stochastic modeling text
books begin their discussion with a process with binary states. This specialization
does not hinder the application of the corresponding methodology, for many natural
phenomena are inherently binary. The occurrence or non-occurrence of tornadoes on

a given day is but one example.

In this article, the methodology of stochastic modeling will be reviewed through
an application, and a model will be developed that can be employed to predict the

occurrence of tornadoes.

2 Markov Chains

Here, the subject will be treated only in its most elementary form, sufficiently deep to
introduce the general concepts, terminology, and notation. For additional details see
(Guttorp 1995 - Ch. 2, Kao 1997). Further, generalities are avoided and the topic is

considered within the specific context of tornadic activity.

Consider the binary variable, x;, with 2 = 1, 2, 3, ..., 366, representing the occurrence
(1) or nonoccurrence (0) of a tornado on day i of the year, somewhere within the
continental United States. Given data (i.e., a time series for ;) it is possible to
estimate some important conditional probabilities; for example, P(z;1; = 1|z; = 1),
which represents the probability of having a tornado on the (7 + 1)% day, given that
there is a tornado on the i'* day. This probability, together with P(z;,; = O|z; = 0),
P(z;+1 = O|z; = 1), and P(z;41 = 1|z; = 0), constitute the four elements of what
is referred to as the 1-step transition matrix. Similarly, an element of the m-step
transition matrix is P(z;y,, = 1|z; = 1), the probability of a tornado m days after the

it" day, if the i** is tornadic.

All of the above probabilities are said to be 1*-order transition probabilities. A
second order transition probability takes into account the state of x; not just on one
previous day, but on two past days. For example, one element of the second order,

1-step, transition matrix is P(z;19 = 1|z;41 = 1, 2; = 0) - the probability of a tornado



today, if there was a tornado yesterday, but there was no tornado on the day before

yesterday. The generalization to higher orders and steps is straightforward.

Theoretically, the probability of a tornado on a given day could depend on the
values of z; for all past days. However, in practice such processes are rare. Most
natural processes appear to have a “memory” that does not extend beyond one or two
days (Guttorp 1995). In fact, the case with a 1-day memory is sufficiently ubiquitous
to have been given a name: (Discrete-time) Markov chain. In other words, a process
(i.e., a sequence of x;’s) is said to be a (discrete-time) Markov chain if the probability
of z; taking some (0/1) value, given the entire past, depends only on the value of z; ;.
If this probability is the same for all 4, then the Markov chain is said to be (time)

homogeneous.

A great many theoretical results have been developed for homogeneous Markov
chains - adding to their popularity; however, it is important to check their assumptions
prior to the application of the results. For the case at hand, the probability of a tornadic
day clearly depends on the day of the year, for there is such a thing as a tornado season.
As such, the process has nonhomogeneous transition probabilities, robbing one of the
opportunity to apply the aforementioned results. And as to whether the process of
tornadic activity is a Markov chain at all, in the next section it will be shown that it

is (i.e., that the extent of the memory is one day).

3 Method

The data at hand span 49 years, and it can be represented as a matrix with 366
rows and 49 columns. Each element of the matrix, z!, where i = 1,2,3,...366, and
I =1,2,3,..,49,is a 1 or a 0, corresponding to the occurrence or nonoccurrence of

some tornado somewhere in the continental United States. !

In order to determine the order of the process, several hypotheses must be tested
against one another. One hypothesis is the one where the occurrence of a tornado on

a given day is independent of that on any other day. For such a 0"*-order process one

'Tn this paper, the last day of a non-leap year is treated as a nontornadic day. This is not expected
to adversely affect the results.



would have P(z;1; = 1l|z; = 0) = P(z441 = l|z; = 1) = P(x; = 1) for every i. In
other words, the process would have no memory. This hypothesis can be tested against
the 1%¢ order process wherein the occurrence of a tornado on a given day depends on
that of the previous day. Adopting the former as the null hypothesis, Hy, and the
latter as the alternative hypothesis, Hy, if Hy cannot be rejected, then there is no
need to examine any other hypothesis, for the process can be said to be 0*-order (or
“random”). Otherwise, one must proceed to test H; against the alternative hypothesis
that the process is second order (i.e., that the occurrence of a tornado on a given day
depends on the occurrence/nonoccurrence of a tornado over the last two days). This
procedure continues until a null hypothesis cannot be rejected, thereby establishing
the most likely order of the process. A more sophisticated approach to estimating the

order is to use an information criterion (Guttorp 1995, sec. 2.8).

Although the order of the process can be anticipated from a comparison of the
empirical transition probabilities estimated from data, a formal starting point for the

hypothesis testing is based on the likelihood (or the probability of observing the data):

_ 1.1 1 2 2 2 49 49 49 |
L(P) = Pr(xy, Ty, ..., T35, LTy Ty oovy T3ggy «ey L1y Loy --L3p6; P)

where P is the vector of parameters (to be estimated) and each z7 is a 0 or a 1. The
49 years are assumed to be independent, which means that overall, large-scale trends

are assumed nonexistent. Then,

49
L(P) = H Pr(x{,xé, ...,aﬁéﬁﬁ; P).

I=1

The likelihood for the 0-th order process is then

Lo = TLITPr(t: P) = TIRG O P, Q)

where ng (i), and n,(i) are the number of years for which the i day is nontornadic
and tornadic, respectively. Note that ng(i) + ni(i) = 49. P(i) = P(z; = 1), and
Py(i) = P(xz; = 0) = 1 — Py(i) are the marginal (climatological) probabilities. The

maximum likelihood estimate for the parameter P (i) is n1(¢)/[no(2) + n1(7)].



For a 1% order process, the likelihood can be written as 2

Ly = T [Poo(0)]" O [Por (0)]™ O Pro (1) O [P ()] x [Py (a)] D [Py (1)]™ ), (2)

i=2
where ng(i) is the number of years for which the i* day and the next day are both
nontornadic. Similarly, ng;(7) is the number of years for which the i* day is nontor-
nadic but the following day is tornadic. Etc. For simplicity, the following notation is
introduced: Py (i) = P(x;11 = l|z; = k). For example, Py (7) is the probability that a
nontornadic day will be followed by a tornadic day; it can be estimated by ng1(¢)/n0(4).
Similarly, Py (%), Pig(7), and Py1 (i) can be estimated by ngo(3) /10 (7), n10(i) /n1(7), and
n11(2)/n1(2), respectively. Note that Py(i) + Poi(i) = 1 and Pio(i) + Pi1(7) = 1. As
such, it is sufficient to examine only two of the four probabilities, say, Py (i) and Py (%),
the probability of a tornado tomorrow, whether today is nontornadic or tornadic, re-

spectively.
The likelihood for the 2" order process is

Ly= TE% [Pooo@]"™®[Poor ()] O[Poso ()" [Proo (D] (3)
X [Poa ()] D[ Pyoy (1)) O [ Pro (6)] 1100 [Py (8) 11 @)
X [Poo(8)]" [Py (5)["* P[Py (4) 0 D[ Py ()" )
x [Pgi)lne(1)[Pr (&)™,

where, for instance, Py () is the probability that two nontornadic days will be followed
by a tornadic day. The maximum likelihood estimate for Pygy(é) is moo1(2)/[n000(7) +
noo1(2)]. The other probabilities can be computed by a straightforward generalization.
Since Pyo(i) + Pyi1(i) = 1 only four of the eight probabilities are independent, and so,
it is sufficient to consider only Py (2), Po11(2), Pio1(7), and Pi11(4). The reason these

four probabilities are selected is that the last day in all of them is tornadic.

Armed with the likelihood for each hypothesis, one can test for the most likely order
of the process. To that end, one can compare L; with Ly, and if L; is significantly
larger than Ly, then one can compare L, with L;. The comparisons of the likelihoods

is best made via a likelihood ratio test (Guttorp 1995, sec. 2.7). After the order of the

2This expression for the likelihood follows from repeated conditioning on the previous day; for exam-
ple, P(z1,%2,...,2366) = P(Z366|21, 22, ..., T365) P (@1, T2, ..., 365) = P(x366|T365)P (1,2, ..., T365) =
P(x366|2365) P(x365|T1, T2, .., T364) P(21, T2, ..., T364) = P(x366|T365)P(x365|364) P (1,22, ..., T364)--- -

6



Probability

(0] 100 200 300
Day

Figure 2: The probability of tornado tomorrow, if there is no tornado today (Pp;), if
there is a tornado today (Pi1), and the climatological probability of tornado (P;) for
every day of the year.

process has been established, say M, then the corresponding transition probabilities

can be employed for forecasting tornadic activity M or more days into the future.

4 Results

As mentioned previously, all of these probabilities (parameters) can be estimated from
the data. Figure 2 shows Py, Pi;, and P, for every day of the year’. The most
prominent feature in these plots is the bell shape of all three curves. This is simply
a consequence of the increase in tornadic activity in the Spring and Summer Seasons,

and implies that the process is not homogeneous.

The next important feature is the separation between the Py; and the P;; curves.
It can be seen that the two probabilities are distinct throughout the year. If one had

found Py = Py, then one would have concluded that the process underlying tornadic

3For purely visual purposes the curves have been smoothed by performing a running average with
a window size of 21 days. The error bars are the standard errors representing the variation of the
data within a window.



08 - 08 -

2 06 506

3 3

© ©

Qo Qo

2 2

T 04| “04r
02 02

0

L L L L L L L L L L L L L
0 100 200 300 0 100 200 300
Day Day

Figure 3: a) The 2-step and b) the 3-step transition probabilities.

activity is random in the sense that the occurrence of a tornado on any given day would
be independent of tornadic activity on the previous day. However, as seen from Figure
2, this is not the case; whether or not there will be a tornado tomorrow depends on

whether there is a tornado today (P;1) or not (Pp;).

The independence of the process is slowly recovered as one examines higher-step
transition probabilities. For example, if one computes the probability of tornado to-
morrow, given the occurrence or nonoccurrence of a tornado yesterday, then one arrives
at the 2-step probabilities plotted in Figure 3a. Figure 3b displays the 3-step transi-
tion probabilities. For the 2-step case, the difference between Py, and P;; is mostly
within the error bars. This means that the 2-day forecasts are mostly climatological.
Two exceptions are the intervals in the middle of the year and at the end of the year
where the curves do display some separation beyond the error bars. For the 3-step
case only the separation in the central range remains. Note that the displayed error
bars are the standard errors. As such, even in the exceptional regions the difference
between the curves is nonsignificant if one considers two (or higher) standard errors
(i.e., approximately 95% confidence). In short, the memory of the process does not

appear to extend beyond one day.

The comparison of Py and P;; can also be made through a scatterplot of the



1 1 —% 1 ' 1
0 0 0
. 0 00 0 0 o 0 00 0 0
0 00 o9p 00 0 Q 0
o % a [ 0 00000 000 0 00 0 09 Vuag 8
.0 o o 0 040 0 g % § g o 00 o 0
) 0 0 0 0% o 09 05 0 4 [
05 O oy 0 0 0g 0 0% 0,0 0 o o o4 Dig'g" 0 °
08t o % 50 020 o 0g % 4 08+ 00 0 080 %o 4 08t 0o _
X o oy 0 00 5 X . of Oﬂdyo 9%00 0 X 0 g 8 . ]
° 08 0%, %, 0 goo 0%0" 8 gOO 0 0 o o osmb%ﬂ o 0
0 ? 0 2007 o 0 0 % ¢ % 3 0 0 090 o 0
0 0 o 408 ¢ 5 0 9B vo g‘b%g" o0 0
0o o 0 0 0 of %0 o 0% o,
o 0o Y45, o 0 % o 0 o 8y
0 000 %0 0 () 0 0 0
06 °% o 005% 1 06 - 0% ¢ 0% o 1 06 F 0 %% 0% 0
. o o of 0 0 i 0 000 3 o 0 B0 %
o P o 00, 8 80 § 00 0 0
8%8 % % 9, o o 0 o o o -
00 %04 0 LR %00 . 0 %0 B 0
0 00 0 0 ]
G.: 0 0 0OmO 0 0 0 0 ﬂ.: 0 0 00 000 , 00 G.: 0@ 00@o0l 0 e g
0 0
$F oo @ 0 ° 9o L 0 0 0° o o0’
0 P0,% o 0 o ° 08 %0°% o o °
0% #08% 0 % 90000
04F o000 oo 4 1 04r o é’ﬁ@ 00 1 04 + 00 0 00fo o
0000 " o0 Ty g J0 0 0 00| 0o
00 o 0 % 0 Q9 0 009 %
o0 0000 0 0 0 mocg}mocc 0 somom %o
04 8050 %, 00 0 0
0% 0 0 % o o
o, g 00008, ° | 0, %
0@ o 00 0 00000 0 00mo 0 0 oo 0
% o 4o 0 8v 0 8 % o0 0
02+ o 9 000 o 02 %(7(708 0% 02F o9 o 20000, 0 o
! 0 0000 ® BOOO o
o o 0% o, by o
0 0,40 o ,0
o 0%¢’ % %8 g b
0
0 I I I I 0 apo-ap! I I I 0 b | |

Figure 4: The scatterplot of Py and Py; for the a) 1-step, b) 2-step, and c) 3-step
transition probabilities.

two. Figures 4 show the scatterplots for the 1-step, 2-step, and 3-step models. The
linear correlation coefficients are r = 0.72, r = 0.82, and r = 0.82, respectively.
The scatterplots for larger steps are not illuminating; however, the linear correlation
coefficient between Py; and P;; for as many as 30 steps is displayed in Figure 5. It can
be seen that r reaches a constant value (within the error bars) at step 2. As such, one
can expect that Py and P;; are distinct only for the 1-step process, and they become

identical (and equal to P;) for m > 2.

In order to assess the 2-day memory of the process it is not sufficient to examine
the 2-step process. One must examine the 27¢ order transition probabilities: Pyg1, Poi1,
Pig1, and Piq;,. For example, a comparison of Pyy; and Py;; can asses the dependence
of tomorrow’s tornadic activity on that of today’s and yesterday’s activity. Figure 6

displays all the pairwise comparisons. For clarity, the error bars are not shown.

The 2™-order transition probabilities generally confirm the results of 1%‘-order,
1-step and 2-step analysis, namely that the memory of the process does not appear
to extend beyond one day. Specifically, the difference between Pyy and Py; is more
pronounced than the difference between Py, and Pig;. Similarly, the difference between

Pig1 and Pjq; is more pronounced than the difference between Py; and Piqq.
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Figure 5: The linear correlation coefficient between Py; and P;; for the 1-step through
the 30-step models.

Further qualitative features can be seen. For example (Figures 6a and b), the
difference between Pyy; and Py;; is almost negligible in the central region of the graph.
As such one may conclude that the occurrence of a tornado during the most active
time of the year is independent of tornadic activity on the previous day, if there is no
tornado 2 days ago. By contrast, if there is a tornado 2 days ago, then the process

does display a 1-day memory throughout the year.

The central region of Figure 6¢ suggests yet another interesting feature. During
the most active time of the year Pyo; is larger than Pig;. In other words, if there is no
tornado today, it is more likely to have a tornado tomorrow if there was no tornado
yesterday than if there was one. This phenomenon can be explained if one thinks of
the occurrence of a tornado as an energy-releasing event that follows a phase of energy
build-up. As such, the occurrence of a tornado on a given day might drain the system
of the required energy to form another tornado on the next day. But after 2 days
of energy build-up, there may be sufficient energy to release in the form of another
tornado. This explanation, of course, is only a hypothesis that must be tested against

alternative explanations.
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Figure 6: A pairwise comparison of the four
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order transition probabilities.




It is also interesting to note the overall right-shift of P;;; with respect to Ppyi;
(Figure 6d). First, and not surprisingly, this suggests that for the latter 2/3 of the
year it is more likely to have three consecutive tornadic days than a 3-day string that
begins with a nontornadic day. However, for the earlier part of the year, it is more
likely for a tornadic day to be followed by another tornadic day, if the previous day is

nontornadic.

As mentioned previously, the analysis of the transition probabilities is somewhat
qualitative, albeit illuminating. The likelihood ratio test can be employed to further
quantify the findings. For instance, it can be shown that 2log(L,/Ly) and 2log(Ls/L,)
have a chi-squared distribution with 1 x 365 and 2 x 364 = 728 degrees of freedom,
respectively (Guttorp 1995) %, For the current data set, one finds 2log(L;/Lo) =
1106.07 and 2log(Ly/Ly) = 437.18. With 365 and 728 degrees of freedom , respectively,
the probability of having a chi-squared as large as 1106.07 and 437.18 is 0 and 1,
respectively. Therefore, there is overwhelming evidence for rejecting H, in favor of
Hy, while there is no evidence for rejecting H; in favor of Hs. This implies that
the underlying process is most likely a 15*-order process, namely a (nonhomogeneous)

Markov chain.

5 Performance

One can assess the utility of the transition probabilities by computing and comparing
the performance of several of the models mentioned above in predicting tornadoes.
The question of performance (or forecast verification) is a complex one that will be
more fully dealt with in a separate article. Here, only one measure of performance will
be adopted to gauge the overall performance of the various models. The measure is
the Receivers Operating Characteristic (ROC) curve (Masters 1993, Marzban 2000).
Briefly, it is a parametric plot of the probability of detection (or hit rate) versus the

false alarm rate (or false positive) as a threshold on a probabilistic forecast is varied

4The number of parameters in Lg, L;, and Lo, as defined in eqs 1-3 is, respectively, 1 x 366,
2x(366—1)+1="731,and 4 x (366 —2) +2+ 1 = 1459. The pre-factors (1, 2, and 4) are the number
of free parameters in P;, P;; and P;j, respectively. The degrees of freedom corresponding to the
likelihood ratios are then given by the difference in the number of free parameters in the likelihoods,
731 — 366 = 365, and 1459 — 731 == 728.

12
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Figure 7: The normalized frequency of tornado forecasts for nontornadic (0) and tor-
nadic (1) days.

from zero to one.

First, note that Py;, and P;; together consitute a forecast for the occurrence of
tornado one day into the future. It is then natural to ask if the forecasts discriminate
between nontornadic and tornadic days at all. Figure 7 shows the normalized frequency
of the forecasts for nontornadic (0) and tornadic (1) days. Evidently, the forecasts do
discriminate between the two events. This figure provides a qualitative measure of the

performance of the 1**-order model in terms of its discriminatory capability.

Figure 8 shows the ROC curves for several models. The amount of “bowing”
of an ROC curve is a measure of performance. A diagonal ROC curve represents
random forecasts, and the more the ROC curve bows above the diagonal, the higher
the performance. A scalar measure of performance based on an ROC curve is the
area under the curve; however, the curve itself is a more faithful representation of

performance due to its multi-dimensionality.

Note from Figure 8 that the climatological model (i.e., 0*-order) has an ROC

curve that overlaps that of the 1%*-order, 2-step model. This is consistent with what

13
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Figure 8: The ROC curves (i.e., performance) of several models.

we found above - that Py; = P;; = P, for the 2-step process. The next best performance
is obtained by the 1%*-order, 1-step process. It is important to emphasize that the curve
lies above and beyond the one corresponding to climatological forecasts. The 2"?-order,
1-step model has a performance that is comparable and only mildly superior to the
1%t-order, 1-step model. It is possible to quantify the statistical significance of the
difference between the two; however, as shown in the previous section, the difference

between the 2"¢-order and the 1%-order model is not statistically significant.

6 Conclusion and Discussion

A time series spanning 49 years is employed to estimate the transition probabilities of
the process underlying tornadic activity. It is found that the most likely process is a
1%t-order, 1-step process, with time-varying probabilities, namely a nonhomogeneous
Markov chain. The corresponding transition probabilities generate a 1-day forecast
for the occurrence of one or more tornadoes somewhere in the continental United
States. The performance of the forecasts is found to be marginally (but statistically

significantly) superior to climatological forecasts.

14
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Figure 9: Scatterplot of the theoretical versus the empirical transition probabilties for
a 2-step chain.

As mentioned previously, many theoretical results have been proven for Markov
(i.e., 15%-order) processes. Therefore, a consistency check on the order of the process is
possible. For example, one well-known theoretical result is the Chapman-Kolmogorov
Theorem (Guttorp 1995), according to which the matrix of m-step transition probabil-
ities is equal to the m' power of the matrix of 1-step transition probabilities. Figure
9 shows the scatterplot of the theoretical transition probabilities (i.e., as derived from
the Chapman-Kolmogorov theorem) versus the empirical ones for a 2-step chain. The
correlation coefficients for Py, and P;; are both 0.998. The same quantities for a 4-step
process (not shown) show equally high correlation between empirical and theoretical
estimates of the transition probabilities. Evidently, the theoretical transition proba-
bilities are consistent with the empirical ones, providing another confirmation of the

1%%-order nature of the process.

The results found here are preliminary in that several issues must be examined
further. These issues also point into future research. For instance, given that there is
no physical reason why the occurrence of a tornado at two geographically distinct points

should be correlated, one may ask how it is that the Markov Chain model developed

15



here can forecast tornadoes with any skill at all. The answer, of cousre, is that it cannot;
the displayed skill shown above is most likley from the skill in forecasting tornadoes
that are spatially correlated. In fact, it is likely that a geographic partitioning of the

above analysis will lead to higher skill forecasts for each region. °

Another issue that has not been examined is the time-dependence of the perfor-
mance of the model. In other words, in light of the exceptional regions in Figure 3, it
is conceivable that the performance of the model depends on the time of the year. This
would require producing an ROC-diagram for every period of interest (e.g., every day
of the year, or every season). This type of time-partitioning may also lead to higher

skill forecasts for certain times of the year.
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