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1 Introduction to R Basics

R is a programming language and software environment for statistical computing and graphics. There
are several graphical user interfaces for R including the basic R console, Rstudio and Tinn-R. Rstudio
5 recommended for R beginners since it is relatively straightforward to use. In Rstudio, when an
incomplete command i= entered, a ‘+' instead of a ‘<" will be returned. We can use Hac to exit the
situation described above.

1.1 Basic Commands

# Lines staorting with [1] represeni outputs
(67 / 276) =~ 2 + 4.3 « 001
X -3 # This seis the var

1, ; 1 - ' e
able © to the number 3. =" 48 usad o
T

i
x # Typing the variable, followed by refurn shows its value.
i Aol B o2 &

logl0(y)

log2(y)

eqri(y)

mean{y) # Sample mean of y: measuras "location”
median(y} # Sample median of y: aonother measure
range(y) # Gives two numbers, min and maz.
ranga(y)[1] # First component of range(y), i.e., min
range(y) [2] # Second compoment of range(y), i.e., maz.
min(y) # Another way of getting the minimum value

max(y) # Another way of getting the mazimum value
length(y) # Gives the size of y

din(y} # Gives dimension of y when y is o matriz.

port{y) # Sorts all the values in ¥

ed(y) # sample siandard deviation of y: measures "spread.”

o

Variables can be either number, vector, matrix, dataframe, character, or logical expression.
is.vector(x) # Checking if ¢ is a vector
Shown below are a few ways of entering data in R.

I %= 1:5
y <- seq(from = 0, to = 10, by = 2) # seq (0, 10, 2), makes a sequence of



# numbers from 0 to 10 (including O and 10),
# in steps of 2.

y <- c(34, 30, 41, 35, 21)

qf) # Quitiing R session if using B on terminal.

1.2 Viewing Help Files

toedian # Shows funciion definition and exzamples.
# Enter g to emit help page.
PPmedian
help.search({"histogram") # Searches all of R (on your computer).

1.3 Acquiring Data

# Browsing through available data sets in R
data{)} # Space bar will scroll through the data seis.
# g: Enter g io epit if using B on a terminal.

Example 1
Reading data from R

# Loading data set "cars”.

data{cars) # This loads the data.

Pocare # Gives info on data sei; if using R on o terminal,
# space-bar = secrolls, g = quit.

care # Simply prinis all the data onte the screenm.

namee{care) # Displays the names of the variables.
[1] "spesd" "dist"
dim{cars) # Shows the dimensions of data set.

[1] 0 2

cargfepeed # Use a dollar sign to select a given column/variable, by name.
care[, 11 # Same as above, but selects by column number.
X <- care$speed # Selects speed (by name) and
# assigns to some variable named m.
x # Shows speeds.
mean{x) # Calculates the mean of speed.
ed(x) # Calculates the standard deviation of speed.



Example 2
Reading data from an existing file.

# The header=T tells B to ignore the first line/case in the data file.
dat <- read.table(file.choosa(}, header = T)

# For reading Excel files, save the file as .csv, aond then read it as

dat <- read.csv(file.choose(), headar = T)

# In place of file.choose(). a path of the file can be specified.

# Be aware that the path is dependent on the operating system (e.g. linuz machines
# use '/’ where Window machines use '\\ ')

# See Pread.csv for details.

1.4 Plotting Histograms

dat <- read.table('hist_dat.txt', header = F)

x <- dat[, 1] # Selects the first column/variable in the data set named dat to plot.
# This command creates a 3 by 3 grid to display the plois

par(mfrow = c(3,3))

# Histograms with differeni bin sizes

hist{x, breake = 2) # Uninformative

hist(x, breaks = 3)

hist(x, breaks = 4) # Unimodal and bell-shaped.
hist(x, breaks = &)

hist{x, breaks = 10) # Bimodal.

hist(x, breaks = 20)

hist(x, breaks = 30)

hist(x, breaks = 100) # Bimodal + outlier.
hist{x, breaks = 10000} # Uninformative.
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hist(x, breaks = geq(-3, 7, by = 1))
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The above suggests that the data/variable = is probably made-up of two different groups. For
example, = could be “height,” in which case the two “humps” (seen at around breaks = 30 or 100
may be identified as the heights of boys and girls, respectively. This type of analysis is a simple form
of datamining, i.e. trying to fizure out what is in the data. In general, change the number of breaks,
and look for changing patterns that may be of interest.

1.4.1 Making “Density Scale” Histograms

One variation on the above (frequency) histogram is the relative frequency histogram, wherein the
frequencies on the y-axis are divided by the total number of cases (also called sample size). In this
example, all of the bar heights will then be divided by 200. Another variation is obtained by further
dividing the relative frequencies by the width of the bars. This version of a histogram is said to be a
density (or density-scale) histogram. The advantage of the density histogram is that the area under
it is 1. This, then, allows us to interpret the area under the histogram, between any two values of x,
as the probahility of obtaining an r value in that interval.
To confirm that the area is 1, check this out.

H = hiet(x, breaks=20)
names (H)

[1] "breaks" "counte" "den=ity" ‘"mids" "Tnama" "egquidist"
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Now, examine the values of the following:
Hfbreaks # Evidently, R decided to let the bin size be 0.5.
1] -2.5 -2.0 -1.5 -1.0 -0.5 0.0 0.5 1.0 1.6 2.0 2.6 3.0 3.5 4.0 4.5
[1s] 6.0 E.5 8.0 6.5 7.0
Hidensity # The y-values shoun on the densily histogram

[1] 0.02 0.05 0.08 0.21 Q.17 0.22 0.15 .10 0.12 0.23 0.17 0.22 0.14 0.06 0.D4
(1] 0.02 0.00 0.00 0.01

And finally, we can confirm that the total area is 1:

+
[}
k

sum(0.5 * Hfdensity)
[0

The R function hist() does allow for making a density histogram:

hist{x, freq = FAL3E) # Density scale histogrom.
5



Histogram of x
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But the reason we did it the “hard way” was to learn more about what R functions return, and
how to use them.

1.5 Outputting Results

# Making o pdf file of a graph and call the file “Rhello.pdf”.
petud ("C:\\Temp") # Sets the directory to C:\\Temp.

pdf("hello.pdf") # Th
# Im REsiudio, this can be
# choosing o folder fo save

par(ofrow = c(1, 2})

[

th
he file “hello.pdf" is placed in C:\\Temp.

dona by elicking 'espert’' on fop of the graph and
the graph to.

hist(x)
hist(x, freq = FALSE])
dev.off(} # This makes sure the pdf file is closed



2 Distributions

R has a family of functions that allow you to analyze the properties of varions known probahility
distributions easily. In this explanation, we will focus on this family of functions for the normal
distribution, but note that these commands analogously exist for most distributions, including (but
not limited to) the Exponential, Binomial, and Poisson distributions. For a full list of the probability
distributions included in base R and their abbreviations, refer to https://cran.r-project.org/
web/views/Distributions.html.

The four functions we will go over are dnorm, pnorm, gnorm, and rnorm. For other distric
butions you may simply substitute the suffix _norm with the appropriate abbreviation of the desired
digtribution. The prefixes d, p, q, and r, don’t change for other distributions.

2.0.1 dnorm

This function returns the value corresponding to the probability density (mass) function for continuous
(discrete) distributions. For the normal distribution, it returns the y-value on the bell curve when
given a value for r and parameters p and . In other words, it plugs x into the following density
funetion for the normal distribution, given values for p and o:

foolz) 1 1 (r —u )2
el = ——exp | —=

B Il Pl 2 a

As a result, dnorm has 3 main inputs: x, mean, sd. x must be an array of numerics corresponding
to the values you want plugeed into the density function. In discrete distributions. x must be an array
of integers. Mean corresponds to p above, and ad corresponds to o above, both numerics. In R, the
defanlt values for mean and sd are 00 and 1,respectively, in all of the norm functions. This corresponds
to the standard normal distribution. The output for dnorm is an array of the same size /shape as the

input .
Let's find the density value for = = (0 in the standard normal distribution:

fo,2(0) = dnorm(z = 0, mean = 0,2d = 1)
= 0.30804

2.0.2 pnorm

This function returns the area to the left of some value; FYT, it's aleo called the cumulative distribution
function. For continuous distributions, this is the definite integral taken from the smallest possible
T to the ¢ of interest. For discrete distributions, the integral is replaced with a summation. More
specifically, for the normal distribution, this is:

Fuole)= [ ; o)

As you may remember from calenlus, this computes the area under the curve of the density function
f, and this area is found from the minimum up unti the point x.

Similar to dnorm, the three inputs to pnorm are an array of numerics = (integers for discrete
distributions), the mean (i), and the sd (¢). The output is similarly an array of the same shape /size

of the input x, where the values are always numerice between 0 and 1.
Let’s find the area to the left of £ = 0 for the standard normal distribution:

Fp,1(0) = pnorm(0, mean = 0,5d = 1)
=05

The value 0.5 means that 0 is the middle/center (technically, median) of the standard normal distri-
bution.



2.0.3 qgnorm

This returns the value of the guantile function at a given quantile value. This can be thought of as the
inverse of the pnorm function; pnorm tells vou the area to the left of some specified z; gnorm tells
vou what value of = has some specified area to its left. The input is an array of area values (numerics
between 0 and 1) and the output is an array of = values of the same size /shape as the input.

Let’s say we didn't know what the median of the standard normal distribution was. We can use
qnorm to find it:

F;1(0.5) = qnorm(0.5, mean = 0,5d = 1)
=0

If the FE: 11[1}.5] on the left is confusing, feel free to ignore it; just know how gnorm worls., We've
confirmed that 0 is indeed the median of the standard normal distribution. Note that pnorm and
gnorm are “by R" substitutes for the “by hand” tables you commonly use when working on your
homeworks!

2.0.4 rnorm

rnorm generates a random sample from a normal distribution. The mean and sd inputs remain the
same, but the primary input n is an integer that represents the size of the random sample desired.
The output is thus an array of length n.

For a reasonably large n, if you were to produce the histogram of =, it would look like the shape
of the normal distribution {density) curve. That is what we mean when we say “take a sample of size
n from a normal distribution.”

Let’s see this in action with the standard normal distribution. We'll first plot the true density
curve by using the dnorm function.

X <- seq(-3, 3, length = 100)

true_deneity <- dnorm(x, mean = 0, &d = 1)
plot{x, true_density, ylab = "f(x)", main = "3tandard Normal Density", type = "1")

Standard Normal Density

T
o

f(x)
0.2
1

0.0

Now let's compare random samples generated by rnorm with varving sizes:



eet.eeed(123) # IMPORTANT for reproducing the same resulis shoum here
gample.l <- rocrm(100, mean = O, sd = 1) # Sample sdze 100

hist{sample.l, prob = TRUE, ylim = c{0, 0.5}, breaks = 10)
linee(x, true_density)

Histogram of sample.1
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sample.1
gample.2 <- roorm(1000, mean = 0, ed = 1) # Sample size 1,000
hist{sample.2, prob = TRUE, ylim = c{0, 0.5}, breaks = 20)

lines(x, true_density)

Histogram of sample.2

Density

00 02 04

sample 2

gample.3 <- rnorm(10000, mean = 0, &d = 1) # Sample size 10,000
hist(sample.3, prob = TRUE, ylim = c{0, 0.5), breaks = 50)
lines(x, true_density)

10



Histogram of sample.3
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Thus we see that the greater n is, the more closely it approximates the density curve. Because
each sample 18 random, the output of rnorm is different with each min. It is hest to set a seed =0
that your results are reproducible, which is especially important when publishing results that rely on
a random number generator, or even when debugging your code.

2.0.5 Other Distributions

Note that in the normal distribution, the p and ¢ parameters uniquely define the distribution. How-
ever, in other distributions, other parameters must be specified which then uniquely define the distri-
bution (such as p and n for the Binomial distribution). Consequently, the parameters that define the
distribution are always some of the inputs to the corresponding R functions. If you're curions about
a gpecific function, please use the R help pages. These can easily be accessed by inserting a question
mark before a function, such as “7Tpnorm”.

2.1 Binomial and Poisson Distribution

-:.l.binom{fll-, 100, ﬁ.'oos:l.

[1] 0.8058

dbinem(0:3, 100, 0.005)

[1] 0.60577 0.30441 0.07E72 0.01243
gun{dbinom(0:3, 100, 0.005))

(1] 0.9383

2.1.1 Plotting

1



I <~ D:3

y <- dbinem(0:3, 100, 0.005)

plot{x, y, type = "b"} # "b" (for "boih") connects the points with lines.
# Sae ¥plot for more options for lime types

-

0.0

# Flotting the mass funciion for different values of n and pi.

# Note the n and pi values that produce normal-looking distributions,
# and those that produce Poisson-looking distributions.

par{mfrow = c(3, 4)}) # 4 3 by 4 matriz of figures.

X <~ 0:20

plot(x, dbinom(x,
plot{x, dbinom{x,

0.01), type = "b"} # n=5, pi=0.01

D.1), type = "b") # n=5, pi=0.1. Use UP-ARROW to get
# most recent run commend

"B") # n=h, pi=0.5

"b") # n=5, pi=0.9

5,
5,

plot{x, dbinom{x, 5, 0.5}, type
plot{x, dbinom(x, 5, 0.9), type

plot(x, dbinom(x, 10,
plot{x, dbinom{x, 10,
plot({x, dbinom(x, 10,
plot{x, dbinom{x, 10,

.01), type = "b") # n=10, pi=0.01 USE UP-ARROW
.1}, type = "B"} # n=10, pi=0.1
.B}, type = "b"} # n=10, pi=0.5
.8}, type = "B"} # n=10, pi=0.9

(=T = I = R =]

plot{x, dbinomi{x, 20,
plot(x, dbinom(x, 20,
plot{x, dbinom{x, 20,
plot(x, dbinom(x, 20,

.01}, type = "b"} # n=20, pi=0.01
1}, type = "b") # n=30, pi=0.1
.B), type = "B") # n=20, pi=0.5
.9}, type = "b") # n=30, pi=0.9

12
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Note that we can approximate the binomial distribution with the Poisson distriution (when w is
small and n is large) or the normal distribution (when 7 is mid-range and n is large).
The shape of the Polsson distribution depends on the parameter A.

par{mfrow = c(1, 1)) # One figure on whole page.

x <= 0:10
plot {x, dpoie(x, 1), type = "b") # "b" siands for "both"

# points and lines.
lines(x, dpois{x, 4), type = "b", col=2, main = 'lambda = 4') # USE UP-ARROW
linee(x, dpois(x, 6), type = "b", col=3, main = 'lambda = €'} # lines() adds lines

# on existing plot

legend('topright', clexpression(lambda == 1), expression(lambda == 4),
expression(lambda == 6)), text.col = c(1, 2, 3}, bty = 'n')

# o' T nT 41 A o i P @ mama ) lsinne *ha dancgdtau Ffaneo*d n AT AT Fms = Al
# swmilarty, anorm(x, mu, S8 -\.-l_._pﬂ?l.l..' PT\:'fl.bC-l. 28 the deEnsity JURciion NoTmai (mu,s51 g.'?:'u._'
w E 7

13



# See Pdnorm() for required format.

G- 0
o0 A=
- G =4
— _ P
s ™ o
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2.1.2 Simulation from Mass and Density Functions

In this section, we will present how to penerate data that follow the binomial distribution; i.e., simulate

the tossing of a coln, without actually tossing coins. For example, shown below iz a way to generate
200 numbers from a binomial:

rbinom(200, 10, 0.5) # format = rbinom(number of fosses, mn, pil
# See Frbinom for more.

Effectively, vou just tossed 10 fair coins, 200 times, each time noting the number of heads out of 10,
This way, you can do a lot of experiments on the computer, without actually doing the experiment!
If the coin is not falr, then just change the parameter «.

o
R ]
2 Ml freer]
For example, consider the Possion disiribution, which is often used to
r r £ n

modal the number of some event, pa
rpois(100,4) generates 100 numbers from the
100 numbers could be the "number of peopla

ge number of people arriving per h 4

rpoie(100, 4) # generates 100 mumbers from the Poisson distribution

Putting an "r" before ithe name is |

tion. So, each of these
eller, per hour®,

o B OB B

#if the avers

# distribution with mu
X <- rnorm({10000, 0, 1)
hist{x, breaks = 200) # Checks the histogram and it looks pretty normal

4l T T } + T7 1 1) T T
# Similarly, the JocLowing draws a single sample aj
i) i

14



2.2 Boxplots

A boxplot of data is a way of summarizing the data into five numbers that capture the shape of
the histogram. The five numbers are the minimum, 25th percentile, median, 75th percentile, and
maximum.

X <- rmorm{10000, O, 1)
par{mfrow = c(1, 2))
boxplot(z, cex = 0.7) # Circles at the end of bozplet are outliers accerding te somé

# critarion

+
T
b

T
[#
2
-

-
=
L

boxplot(xz, range = 0)

-2 0 2 4
l

-2 0 2 4
|

Example 1

Now, recall the bimodal histogram we saw before in hist data. It was bimodal because two separate
data filea were joined, each one with 100 cases in it. We can separate the two and boxplot them,

separately:

dat <- read.table('hist_dat.txt', header = F)
I ¢~ dat[, 11 # All of z

x_1 <- x[1:100] # Put the 1st 100 casas
2.2 <- x[101:200] # Put the remoinder in
parimfrow = c(1, 23)

hist(x, breaks = 20) # Draw a histogram

boxplot(x_1, x_2) # Draw bozplots

15
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Example 2: Attendance Data

The variable of interest is the “percentage of time student attends lectures”, and the two groups are
boye and girls.

dat <- read.table('attend_dat.txzt', header = T)
I <- datPattendance
y <- dat$Gender

parimfrow = c{2, 23)

# 4 way of selacting cases in ¢ that correspond to some value of y.
hist{z[y == 0], main = "Boys' Attendance", xlab = 'Attendance')
hist(x[y == 1], main = "Girls' Attendance", xlab = 'Attendance')
boxplot{xz[y == 01, x[y = 1])

# Look at the fwo sample means to
# boys and girls with respect to
mean{x[y == 01} # Sample mean a

ag if there is a difference between
thair atiandance.
ttendance for girls.

8
F
b

[1] B7.&T

mean{x[y == 1]} # Sample mean atfendance for boys.

[1] 86.4

# The y=0 group (girls) has the higher sample mean than the y=1 group (boys);
# (87.6 ve. B6.4). But the medians are reversed (92.5 ws. 9EF)

median(x[y == 0]) # Sample median atiendonce for girls.

[1] 92.5
median(x[y == 1]) # Sample median sttendanceand for boys.

[1] 95

16
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There are several sources of complexity in comparing two groups:

1. Sample mean or median measure only “center” or “location” of data.

2. They measure 2 different notions of “center;” and there are many others.

3. Measures of location (e.g., mean, median) do not capture all characteristics of the sample. The

spread 1s equally important.

TR o T = 3 £ £F u o ERS et ] L 3 o +
# One measure of spread is the sample standoard deviation

TP a) 7 o o T st o oF o £ A P T ¢
ed(x[y == 0]1) # Sample standard deviation of atfendance for girls
[1] 20.41

= ] [ + A dage i AT g A F ¥
ed(x[y == 11} # Sample standaord deviation of attendance for boys

[1] 18.02

17



We can see that the spread 15 a bit wider for girls than for boys. In statistics, some interpretation
15 always important. For example, one might say that boys are more “consistent” across the sample.

The above analysis of comparative boxplots is extremely Incomplete. For a more complete discus-
gion, see the lecture notes. Get used to the idea that if there i= “too much® overlap between baxplots
(or histograma), then one has to be very careful about generalizing what the sample-based conclusions
to the population; in those cases, the correct conclusion is “The data do not provide sufficient evidence
for ---." In other words, the correct conclusion is “We can't tell.” But, like I said, read the lecture
notes.

Overlaying two histograms

Even though boxplots are truly nseful when comparing multiple data sets (or distributions), there are
gtill times that you need to show the full histograms (i.e., not summarized by boxplots). Here 18 one
way of overlaying two histograms onto the same plot:

dat <- read.table('hist_dat.txt', header = F)
X <= dat[, 1] # Here is all of @

x 1 <- x[1:100] & Pui the I1st 100 cases of ¢
. 2 <= x[101:200] # Put the remoinder in zT_2
a <- hist(x_1, plot = F)

b <- hist(x_2, plot = F)

x.lim <- range(c(afnids, b$mids))

plot{a$mids, afcounts, type = "h", zlim = x.lim, xlab = 'mids', ylab = 'counts')
lines (b§mids + 0.1, b$counts, type = "h", col = "red") # The shift of 0.1 aveids
L=
0 Lo
T
= 4
A1 | | I |
T T T T

-2 0 2 4 6
mids

That was the hard way! But it shows the inner-workings of hist(). The easy way is:

hist{x_1, breaks = 20, zlim = range(x_1, x_2), xlab = 'mids', ylab = 'counts', main = ''}
hist(x_2, breoaks = 20, add = T, border = 2}

18
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I

counts
[

2.3 Sample Quantile
Suppose our E&mplefdatn consists of the following 11 numbers:

x <- c(-10, 50, 30, 20, O, 40, 70, 60, -20, 80, 10)

# The median of this data is 30, as confirmed by
median(x)

[1] 30

# That's becouse about half of the cases are smaller than 30, and about
# half of the data are larger than 30. (I say "about” because 11 is not
# ezactly divisible by 2). The way te see that dis to sort the data

sort (x)

1] -20 -10 © 10 20 30 40 50 60 7O BO

# Note that 5 numbers are lower than 30, and 5 numbers are larger than 30.
# There are three other ways of stating this result:

# - 50F of the cases are less than 30.
# - The 50th percentile of the data is 30.

# - The 0.5th quantile of the dato iz 30, as confirmed by
quantile({x, probs = 0.5}

s0%
20

# Note: 50th percentile = 0.5th quantile.

# Similarly, 10th percentile = 0.1th quantile, and S0tk percentile = 0.5th

19



quantile{x, probs = 0.1)

10%
-10

2.4 Distribution (Quantile

In this section. we will review the notion of distribution quantile. Recall Table 1 in the textboolk,
which gives us the area under the standard normal distribution to the left of some number. For
example, z = 1.285 has about 90% of the area to its left. That means that about 90% of the values
of z (ranging from —oo to +oo) are less than 1.285. In other words, the D0th percentile (or 0.0th
quantile) of the standard normal distribution is about 1.285. Table 1 is more precisely encoded into
the R function gnorm():

7]

qnurml{ﬂ.'-:d, mean = f), Bd = 1, lower.tail = TRUE}

[1] 1.282

gequence <- seq(0.1, 0.9, by = 0.1)
gonorm{sequence, mean = 0, sed = 1, lower.tail = TRUE )

[1] -1.2816 -0.8416 -0.5244 -0.2633 0(.0000 0.2633 0.5244 0.8416 1.2818

2.5 Q-Q Plots

A g-q plot is a plot of sample quantiles versus distribution quantiles for some specified distribution.
If the result is a relatively straight “line,” then there is some evidence that the data have come from
that distribution. More intuitively, there is evidence that the histogram of the data is consistent with
the specified distribution. Most often when people talk about a q-q plot, they are assuming that the
distribution = the standard normal distribution. So one plots sample quantiles (along the y-axis)
versus quantiles of the of the standard normal (along the x-axis). The R corresponding function is

gqnorm( ).

Example

Now we take a sample from a standard normal distribution and use ggnorm() to make the g-q plot
for the sample. Then, we will make the g-q plot “by hand:”

20



n <- k0O
x <- rnorm(n, 0, 1)

qqnorm(x, cex = 0.5)

I <-geq(.5 /mn, 1-.5/n, length = n)

Q <- gnorm(X, mean

=0, sd = 1)
plet(Q, sort{x}, col =

2, car = {0}

ablina(0, 1)

Normal Q-Q Plot

8 ~ 4 ; . a
= il : _
g g ¥
o
=R o [
-E N @ .
= — -
8 ™ e o
w0 T T T T T 1 ' E- T T T F T 1
-3 -1 1 2 3 -3 -1 1 2 3
Theoretical Quantiles Q

Note that the two q-q plots are the same. Make sure you understand what's done here: When
we have 500 observations, each one is associated with a percentile; e.g., the smallest observation has
nothing less than it, and so its percentile (rank) is 0. Meanwhile, the largest obs has everything less
than it, and so, its percentile (rank) is 100%. In terms of quantiles (instead of percentiles), these two
limits are () and 1; and that’s why we have X go from 0 to 1. In fact, the numbers go from a number
close to 0 to a number cloge to 1, namely from .5/n to 1 —.5/n; this is mostly a matter of convention
for handling the lowest and the largest element in the sample. Then, Q) = qnorm(X,0,1) returns the
quantiles of the standard normal dist.

It's not obvious but {e.g., see the book) the slope of the “line” is the ¢ parameter of the normal
distribution from which the data have come, and the y-intercept of the line is equal to the y parameter
of the distribution. In this case, we can see that the slope is around 1, and the y-intercept is around 0.
We have confirmed this by drawing a line with slope = 1, v-intercept = (. Note that the line we have
just drawn 18 NOT the “best fit" line to the g-q plot. When we talk about the slope or the intercept
of the g-q plot. think of them as the “visual slope” and the “visual y-intercept” instead.

Now, let’s consider data coming from a normal distribution with g =8, ¢ = 2 (i.e., not standard).
If we continue using the quantiles of the standard normal along the x-axis, it turns out the slope will
then be 2. and the intercept will be 8. In other words, the interpretation of the g-q plot is still the
same - the slope is going to be close to the o of the distribution from which the data were drawn, and
the intercept will be approximately the p of the distribution.
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n <- k0O
x <- rnorm(n, B8, 2)
hist(x)

qqnorm(x, cex = 0.5)
ablina(8, 2) # Add o

Histogram of x Normal Q=-Q Plot
uw
4 T Q | g
s - Ie:
5 F - 2 © -
o - o -
§ o -
A T T B R R 2 T F T T T
246 8 12 -4 7-1 1 23
X Theoretical Quantiles

Now, let’s get a sense of what a standard normal g-q plots look like for data from non-normal
digtributions. Recall that if the data come from a normal distribution, their g-q plot should look like
a straight line, at least in the bulk of the plot; the tails nsually deviate from a straight line, becanse
there are usually few cases there anyway. A normal g-q plot s a visual method for checldng whether
data are normally distributed. Also, if linear, then the intercept and slope of the line can be uzed as
estimates of the p and & of the normal distribution, respectively.

x <- rexp(m, 1)

hist{x)
qquorm(x, cex = 0.5)
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Histogram of x

Frequency

Normal @-Q Plot

0 100 250

Sample Quantiles

0 2 4 6

Theoretical Quantiles

As we can see, a non-normal sample will not produce a linear pattern because ggnorm| ) checls the
data against the standard normal distribution. But how do we identify if some data come from some
other distribution, say, from the exponential distribution? The solution is to use analog of ggnorm
for the exponential distribution. For example, we can plot quantiles of data versus quantiles of the
exponential distribution. In R, the corresponding function is gqgmath(), which allows for a large

number of theoretical distributions.

library(lattice) # Load the library that
x <- rexp(b00, 1) #Sample of size 500 from a

hist(x)
qquath(x, dist = gexp, cex = 0.5)

Dimnll 17 +hmt . g
¥ Famabiy, recalt that N SECH

o o] Aart &t o e 0T+
Le L= L

y-g e

dat <- read.table('hiet_dat.txt' , header

qqnorm(dat[, 1], cex = 0.5)
# You can see that there are two
¥

e T + A + "
# Fay q aran amF oy
w Pl el BT ST lpb el LEL b ]
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2.6 Jargon

As explained in class, in statistics, we use distributions to represent populations. In fact, we can
think of distributions and populations as one and the same thing. Specifically, when we talk about
“a sample from a population,” what we really mean i5 “a sample from a distribution.” That jargon
can be confusing for some of the distributions (especially, Binomial), but it will help if every time you
hear "a sample from a distribution,” you translate that into what the actual data in the sample would
lock like. Consider the following examples, and their translation:

“A gample of size n from a Bernoulli distribution with parameter 7." Translation: n numbers,
each either 0 or 1, and the proportion of 1's is around .

“A sample of size n from a Normal distribution with parameters pp and ¢." Translation: n numbers,
each between oo, with most around g, and a typical deviation around o.

“A sample of size m from a Binomial distribution with parameters n and 7." Translation: m
numbers, each an integer between 0 and n. (Later, you'll see how 7 affects the sample.)
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The last one i3 particularly confusing because of the names R uses to refer to the parameters of the
Binomial distribution. Specifically, what we call the n and 7 parameters of the Binomial distribution
are called “size™ and “prob.” And, to make matters worse, take a look at the help pages for rbinom;
you'll see “rbinom(n, size, prob),” and so the n that appears in there is NOT what we call the n
parameter of Binomial. I did say that it’s confusing!
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3 Regression

3.1 Scatter Plots

The best way of visualizing the relationship between two continuous random variables is through a
scatterplot. (Just in passing, the analog for two categorical variables is the Contingency Table, also
called the Confusion Matrix.) It can convey a great deal of information, including whether or not
the relationship linear, and the extent of the strength of the relationship. Here, strength refers to
the sldnniness of the scatterplot. Let's illustrate through an example: Pick 100 random r values,
and corresponding y values that have some linear association with ¢ and change the amount of linear
association by adding different amounts of “error™ to .

par(mfrow = c(1, 2))
I <- Tunif(100, -1, 1} # Take 100 peoinis from o uniform distribution beiween

hist(x) # The shape and looks uniform

error <- roorm(100, 0, 0.1} # Generate o normal variable (the errer), with mu=0,

# odama= 1
¥ stgma=t). 1

hist{arror) # The shape looks 1

Histogram of x Histogram of error
e = ——

—] ___ o™ dil
.1 AV, -
g . 3 i
8 v A g 2-
[T — LL ]

= [ - _|_==

| | | [ | 1 1 1
=1.0 00 05 10 02 02 04

X emaor

.1 <= 2w x # Parfect linear relatl

¥.2 <= 2w x + arror # With some err

y.3 €- 2 » x 4 roorm{100, O, 0.5) y

y_4 <= 2 » x + rnorm(100, 0, 1.0)

par{mfrow = c(2, 2))

plet{x, y_1, cax = {.5]

plet(x, y_2, cex = 0.5)

plet{x, y_3, cex = 0.5)

plet{x, y_4, cex = 0.5) # Note that too much noise makes hard to see
# the linear relationship i and
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3.2 Correlation

To quantify the strength of the association between two continuous variables, Pearson’s correlation
coefficient (i.e., correlation), can be computed. It measures the ‘amount of scatter’ (i.e., skinniness)

in a linear sense (but NOT about “the fit").

cor(x, y_1)
(1] 1
cor(x, y_2)
[1] 0.99&
cor(x, y_3)

y_2

y_4

7

2
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[1] D.%321

cor(xz, y_4)

(1] 0.7744

cor(y_4, x) # r is symmeiric.

(1] 0.7744

cor(y_4, x + 10) # r ds invariant under shifits.
(1] 0.7744

cor(x, 10 * y_4) # r is invariant under scaling.

[1] 0.7744

3.2.1 Defects of Correlation

Pearson’s correlation coefficient, r, can become misleading in several situations.

pet.eoed(123) # Set a seed to get reproducable results.
I <- runif(100, €, 1}

errcor <- rnorm(100, 0, 0.5}

¥4 L+2w%1x+ arror

x_1 <- roorm(100, O, 50)

y_1 <- roorm(100, 0, B0}

1_2 <- 1000 + rnorm(100, 0, 5O)

y_2 <- 1000 + rnorm(100, 0, 5O)

plot{x, y, main = 'Without Outliers', cex = 0.5}

cor(x, ¥}

[1] 0.7662

# Effect of outliers:

x[101] <- 0.2 # Adding one ouilier can aridificially reduce r.
y[101] <- 8.0

plet{x, y, main = 'With Outlier (0.2, 8.0)', cex = 0.5)

cor(x, ¥y

[1] 0.518

x[101] <- 2.0 # 4 different outlier can artificially incresse r.
y[101] <- 8.0

plet{x, y, main = 'With Outlier (2.0, 8.0)', cex = 0.5)

cor(x, ¥}

(1] 0.8129

# Clusters can alse make T megningless.
plet{x_1, y_1, main = 'Cluster 1', cex = 0.5)
cor(x_1, y_1) # No correlation between z ond y in cluster 1
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[1] 0.05E9T

plot{x_2, y_2, mai
cor(x_2, y_2)

[1] -0.006664

¢ clx_1, x.2)
¥y <= cly_ 1, 7.2)

n = 'Clustar ', cax = &.5H)

plot{x, y, main = 'Combined Clusters', cex = 0.5)
cor(x, y) j A : bat
[1] 0.991
Without Outliers
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The moral is this: Use r to measure linear correlation, but always examine the data (e.g. with a
scatterplot) to make sure things are okay.

Example: Ecological Correlation

The following example lllustrates another way in which the value of r can be “artificially” increased,
i.e., by averaging over things before computing r. For similar reasons, regression results (disscussed
in later sections) can be misleading as well.

dat <- read.table('3_17_dat.txt', header = TRUE)

x <~ dat[, 1]

y <- dat[, 2]

z <- dat[, 3]

plot{x, yJ # A er plot

cor(z, y} #X ation of 0.733 between the 9 poirs

(1] 0.7329

Ibar <- numaric(3) # Allocating space for storing the fdme-averaged values of ¢
ybar <- numaric(3} # ond of y

xbar[1] <- mean(xz[z == 1]} # This averages = values only when fime = I
ybar[1] <- mean(y[z == 11}

zbar[2] <- mean(x[z == 2]} # USE UP-ARROW

ybar[2] <- meaniy[z == 2])

xbar[3] <- meani(z[z == 3])

ybar[3] <- meaniy[z == 31}

plot(xbar,ybar) # Scatterplot of the 3 a pairs,

cor (xbar ,ybar} # and their exireme corre of 0.588

(1] 0.93985
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You can see clearly how it is that averaging tends to increase r, by reducing the number of points
and their scatter about a line. Looking at the last scatterplot of the original data, but with the three
times colored differently, you can see why this magnification of r is happening: Averaging the three
pairs for each time, replaces the three points with a single point located in the "middle” of the three.
In general, then, averaging tends to reduce the scatter, and hence the resulting r (called the ecological
correlation ):

plot{x[z == 1], y[z == 11, xlim = range(x), ylim = ranga(y)} # Scaiierplot for time 1
peinta(x(z == 2], ylz == 2], col = 2) # time 2 (USE UP-ARROW)
pointa(x(z == 3], ylz == 3], col = 3) # time 3

peinta(zbar, ybar, col = 4) # and the asveraged daota

pdf{"ecol.pdf")
plot{x[z == 1], ¥[z == 1], xzlim = range(x), ylim = range(y), xlab = "x",
ylab = "y", pch = 1, cex = 3}

pointa(z[z == 2], ylz == 2], col = 1, pch = 2, cex = 3)
pointe(z[z == 3], ylz == 3], col = 1, pch = 3, cex = 3)
dav.off(}
pdf
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3.3 OLS Regression on Simulated Data

Regression (or a line that fits the scatterplot) can be used for prediction. The function Im(), which
stands for linear model, does runs a regression in R. It fits a curve through a scatterplot, or a surface
through higher-dimensional data.

rm{list = 1s(all = TRUE)) # Start from o clean slate.

pet.eeed(123} # Ensures reproducable resulis

x <- Tunif(100, @, 1) # z is uniform betuween O and 1.

error <- roorm{100, O, 1) # Error is normal with mean = 0, sigma = 1.
¥ <= 10 + 24x + error # The veal/true line is y = 10 + 2z

plot{x, yJ # Flot the scaiterplotf.

cor{z, y) # Correlation between = and y.

[1] 0.4316

medel.1 <- Im{y " x) # Fitting the regression.
h a3

model.l # Note that the estimated coefficients are prefty clese to the irue ones

Call:

ln(formula = y ~ x)

Coefficients:

(Intercept) X
g. b8 1.81

abline(model.l1} # Superimposes the fit on the scatterplot

# To see whot else is returned by Im(), use the following command:
names (model. 1)

[1] "coefficiemte" “rasiduals" "affacte" "rank"
[6] "fitted.values" "assign" e "df .reeidual"
[9] "xlevels" "call® "tarme" "model"
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e S . -
# To select one of the items returned in Im(), use the dol

model.1fcoafficients

(Intercept) x
8.991 1.810
=
=
o~
=
>

10

8

3.4 OLS Regression on “Real” Data

x - c(¥2, 7O, 66, 68, 70} # Enter data inte R

y <- c(200, 180, 120, 118, 180} # See 1.1 for alternative
plot{x, y, cex = 0.5}

cor(x, y)

[1] 0.8892

model.l <- 1m(y ~ x)
abline(modal.1} # Drauws the fit
modal.l # Refiurns the esiimated intercept and slope

Call:
Im(formula = y

-

I}

Coefficients:
(Intercept)
=765.1 13.3

gummary (model. 1)

Call:
Im{formula = y

x)

33
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Ragiduale:
1 2 3 4 &
=-1.46 &K.11 11.54 -30.31 15.11

Coefficients:

Estimate Std. Error t walue Pr{>|tl)
(Intercept) -7B5.11 272,83 2. 77 0.070 .
X 13.29 3.95 3.37 0.044 =

Signif. codes: O "##%' 0,001 '+%' Q.01 '+" 0.0b '.' 0.1 ' ' 1
Residual standard error: 20.9 on 3 degrees of freedom

Multiple R-squared: O0.731,Adjusted R-equared: 0.721
F-statistic: 11.3 on 1 and 3 DF, p-valua: 0.0436

160 200

120
|

Example: Regression on Hail Data

In practice, two quantities called “divergence” and “rotate” are measured by Doppler radar, while
hall sige 18 measured directly, Le., on the ground. But if we can relate haill size to divergence and
rotate, then we can predict hail size from Doppler radar. In regression lingo, size is the responsze (or
dependent) variable, and the others are predictors (or independent variables, or covariates).

dat <- read.table("hail_dat.txt", header=T)

plot{dat)

TF o} . + P i al " - i Tr + F ! ¥ T -
cor(dat) # This shows the correlations between ALL the vars in the hail deta

Divergence Rotational_ velocity Hail_=size

Divergence 1.0000 0.5496 0.5214
Rotational welocity 0.5436 1.0000 0.5386
Hail size 0.5214 0.5386 1.0000
eize <- datl, 3] # Nome the 3 columns in dat. Size is in 100th-of-on-inch.



rotate <- dat[, 2]
diverg <- dat[, 1]

medel.1 <- lm(size = diverg)
plot{diverg, size)
abline(modsl. 1)

rotata)

model.2 <- lm{=ize
plot{rotate, siza)
ablina{modal.2)

o
m
2
8
i ¢ S
N o™
& 7
i 38
&) g &
=
Hall sze |~
o - 8
rri1 =
20 50 80 100 400

size
300

100

Note that it looks like the line is not really going “through” the data; it seems like the line's slope
ghould be larger. The fit is in fact correct. The line that intuitively (or visually) goes “through” the
scatterplot ia NOT the regression line, but something elze called the “=d line.”
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3.5 Analysis of Variance (ANOVA) in Regression
ANOVA decomposes SST (total sum of squares) into SS.zplained 80d 5 Sunezplained (SSE).

SSerplained = ¥ (i —8)°

88T = E{y‘- — yjﬂ
i=1

: (1)
Zfﬂi — i) (2)
(3)

58, zplained 18 converted to a proportion called R-squared (aea. coefficient of determination). It
measures the proportion of the variability in y that is explained by z. It's a measure of poodness-of-

fit.

x <- c(72, 70, 66, 68, TO) # Enter data inio R

y <= c(200, 180, 120, 118, 190) # See 1.1 for alternative ways to enier data
plot{x, yJ # Plet the scatterplot.

cor(x, y) # Correlation between T and y.

[1] 0.8892
model.l <- Im(y ~ x) # Fitting the regression

ancva(model.l} # Note that SS_exzplained = 4942 and SSE = 1309
Analysis of Variance Table

Responsa: y

Df Sum Sq Mean Sq F value Pr(>F)

x 1 4542 45432 11.3 0.044 =%

Residuale 3 1308 435

Signif. codeg: O '"##4' 0,001 '#++' 0.01 's' .05 '.' 0.1 ' ' 1
punmaryfmodel.1) # R-squared = 0.7908

Call:

Im(formula = y ~ x)
Residuals:

1 2 3 4 5]
-1.46 &.11 11.84 -32.31 15.11
Coefficients:
Estimate Std. Error t walue Pr(>|tl)

(Intercept) -7565.11 272.63 -2.77 0.070 .
x 13.28 3.856 3.37 0.044 =
Signif. codeg: O "##s' 0,001 "#&' D01 '#' 0,06 '.' 0.1 ' " 1
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Residual standard error: 20.23 on 3 degrees of freadom
Multiple R-squared: O.731,Adjusted R-equared: 0.721
F-statistic: 11.3 on 1 and 3 DF, p-valua: 0.0436

¢ TF D= do &z ot ad mo Wy T+amTe Do e Ao dq®
¥ I'ne A 2 13 reported as |'.r-\.!-l.--\. P Le8 R-Squarad

# Note that the R-squared from summary() agrees with 1-(55E/S5T)
1 - (1308.9 / (4842.3 + 1308.9))
[1] 0.7306
(=]
Ej = [#]
8]
- o
L=
> O
—
Ej -0 [}
= L L L™

S Sunerplained (S5E) is converted to a standard deviation (of errors), and denoted as se. This

standard deviation of errors is also called standard deviation about regression. FEither way it is
reported as “Residual standard error: 20.9". Note that it is equal to g3%.

n-Z"
eqrt(1308.9 / (6 - 2))
[1] 20.89
In sum, R-squared and se together tell you how good the model is. R-squared tells you what

percent of the variance in y can be attributed to z, and se tells you the typical error, i.e., deviation
of data from the line.

To get B* (and nothing else), use the following command:

punmary (model. 1337 . squarad

(1] 0.7508

& .- +h 2 PauTT # +n nhank +hadt D Fc ala nl ¥ 77 | o, F = I -

# Do the following to check that R's S5E really is Sum of Sguared Errors
1 Thi 1 3 s Al A a7t a4

y_hat <- predict{model.l) # This is a quick way of geiiing y_hat

4 T -F-F: ol T e o [-
:f_hﬂt # To sea the pradiciions.

1 2 3 4 h
201.5 174.9 108.6 148.3 174.8

W



sun({y - y_hat) = 2) # 1308.914 = S5E abov:

[1] 1308

3.6 Visual Assessment of Goodness-of-Fit

One way to access the goodness of fit is to examine the scatterplot of predicted v versus actual y.
y_hat <- predict(model.l)

y_hat <- mndalilﬁ itted.valuss

plot(y, y_hat, cex = 0.5)

abline(@, 1, col = "red") iagonal I
ablina(h = mean(y)) # Add a horizontal line

y_hat
160 200
|

120
|

120 160 200

If the model were good, this scatterplot would be symmetrically spread about the red line. But,
clearly our model &8 not good. This scatterplot (of predicted vs. actual) & often a great way of
visualizing how well the model is doing. For example, we see that for smaller hail size (Le., small r
value), the predictions of size are all above the diagonal indicating that the model over-predicts the
size of small hail. Looking at larger x values, it's clear that the model under-predicts the size of large
hail.

If a model i completely useless, then the predictions will be symmetrically spread about the
horizontal line at the mean of y. Here, we can see that our model is nearly (but not completely)
useless. This kind of model diagnosis can help in coming up with a better model.

Another visual assessment tool is the residual plot. This plot checks different facet of “goodness™
(or quality) than the above plot.
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plot{y_hat, model.l$residuals, cex = 0.5}
abline(h = 0}

10
|

=10

model.1$residuals

— 1 7 a1
120 160 200

y_hat

In a good fit, these residuals (or errors) should NOT display any relationship with the predicted
values. Ome way to confirm that there is no relationship is to compute the correlation:

cor (y_hat, model.l$residuals)

[1] -1.237a-16

The fact that the correlation is zero is not a direct reflection of the goodness of fit, because that
correlation is zero by construction. If it's not zero, one has a bug! In fact, it is the identically-zero
nature of this correlation which makes a plot of the residuals vs. ¢ a useful plot to examine. The
correlation between the residuals and the observed y values is not identically zero; and for that reason
the corresponding scatterplot s not readily interpretable.

3.7 Nonlinear Fits (Linear Regression with Higher Order Terms)

Linear regression 8 actually NOT linear when it comes to allowing nonlinear relationships between &
and y. (The term “linear” refers to the parameters of the model, i.e., the regression coefficients.) This
5 good news, because linear regression can fit any nonlinear data. But it’s also bad news, because
the abilit¥ to fit nonlinear data also allows for overfitting., In developing regression models of data it
5 important to assure that the model is not overfitting the data, because such a model will have poor
predictive capability, Toward the end of this book we will see how to assess the predictive capability
of a regression model. Here, let's first confirm that linear regression can overfit (memorize) data.

gat.saad(12)
x <- seg{0, 0.9, D.1)

¥y <- x 4 rnorm(10, 0, 0.3)
plot(x,y) # Look e d

lm.1 <- Im(y = x)
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linee(x, lm.1$fitted.values)

Imn.2 <- Im(y = x + I{x"2)) # Fit a regression model incl

Im.3 <- Im{y - x + I{x"2) + I[(x"3)) # ddd a cubi
lines(x, 1mn.3$fitted.values, col = 3) # Note tha

o

e fit is geiting more curvy.

In.4 <- Im(y - x + I{x"2) + I{x"3} + I[{x74) + I{x°6} + L[{x76) + I(x"7) + I(x"8)
+ I(x"9))

# Fit a 9th order polynomial.

linee(x, 1m.4$fitted.values, col = 4)

punmary(lm.4)$r.equared # Ezomine the RE-squared.

i g

legend('bottomright', c('Linear’, 'Quadratic', 'Cubic', '9th Order'),
tart.col = c(1, 2, 3, 4, bty = 'n')

# Note thai the last model will have no pradictive power since it owverfits the daia.

@
o
=4 &
> If H
o A% | Linear
S < Quadratic
. Cubic
o |5 9th Order
T 1 | | | |

00 02 04 06 08

3.8 Model Comparison
Example: Hail Data

Note that the closer B? is to 1, the “better” the fit and the closer it is to 0, the worse. But do
recall that because of overfitting concerns, higher A? does not necessarily mean better predictions on
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new (future data.

dat <- read.table("hail_dat.txt", header = T)

x_1 <~ dat[, 11 # Divergence.

x_2 <- dat[, 2] # Rotfate.

¥y <- dat[, 3] # Hail size. Size is in 100ih-of-an-inch.
# Renaming the colums in dat:

colnames{dat} <- c("xz_1", "x_2", "§")

Im.1 <- Im{y = x_1} # Predicting size from divergence (simple regression).
gummary{1lm. 1)

Call:
Im(formula = y ~ x_1)

Ragiduale:
Min 10 Median 20 Max
-126.1 -k0.9 -19.8 4.8 262.6

Coafficients:

Estimate Std. Error t walue Pr(>|t])
(Intercept) 43.673 13.361 2.62 0.012 =
G i | 3.417 0.334 10.23 £3a-16 #4*

Signif. codeg: O '"##s' 0,001 "w«' D.01 's' 0.06 '.' 0.1 ' " 1

Residual standard error: 76 on 280 degress of freadom
Multiple R-equared: O.272,Adjusted R-equared: 0O.269
F-statistic: 1056 on 1 and 280 DF, p-value: <2e-16

Im.2 <- Im(y = x_2)} # Predicting size from rotation (simple regression).
gummary {1m. 2}

Call:
ln(formula = y ~ x_2)

Ragiduale:
Min 10 Median 20 Max
-180.9 -k6.1 -11.6 36.6 268.4

Coafficients:

Estimate Std. Error t walue Pr(>|t])
(Iﬂtercap‘t) a7 .268 12.5608 2.88  0.0031 ==
b 7.858 0.735 10.70 £2a-16 #w4*

Signif. codeg: O "##s' 0,001 'w«' 001 "#' 006 '.' 0.1 ' "D

Residual standard error: 75 on 280 degrees of freadom
Multiple R-squared: 0.23,Adjusted R-squared: O0.288
F-statistic: 114 om 1 and 280 DF, p-value: <2e-16
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In.3 <- Im(y = x_1 + x_2) # Predicting size from both (multiple regression).
pummary (1m.3)

Call:
Im(formula = y

Ti1 & x93}

Ragiduale:
Min 10 Median 30 Max
-1R7.4 -R2.0 -12.2 35.5 261.8

Coafficiente:

Estimate Std. Error t value Pri>|t])
(Intercept) -1.178 13.684 -0.08 0.93
x_1 2.117 0.375 5.65 0.0000000401 #&
I 2 5.268 0.835 G.31 0.0000000011 #«

Signif. codeg: O "##s' 0,001 'w«' 001 "s' 006 '.' 0.1 ' "D

Residual standard error: 71.2 on 279 degreses of fresedom
Multiple R-squared: O.363,Adjusted R-equared: 0O.358
F-statistic: 79.b on 2 and 279 DF, p-value: <2e-16

Im.4 <- Im{y = x.1 + 2.2 + x_1:x 2} # Multiple regression with interaction.
gummary (1m.4)

Call:
In(formula = y ~ x_1 + x 2 + x_1:x_2)

Residuale:
Min 10 Median 30 Max
=1k¥.1 =E0D.8 -=14.2 3E6.6 2641.0

Coefficients:

Estimate Std. Error t wvalue Pr(>|t|)
EIﬂtErCEpt) Ti.6091 34.7693 2.06 0.040 =

-1 0.1983 0.8217 0.22 0.823
x_3 1.0612 2.0263 0.52 0.601
x 11 2 0.1030 0.0453 2.37 0.024 *

Signif. codeg: O "was' 0,001 "w«' D.01 's' 0.06 '.' 0.1 ' " 1

Residual standard error: 70.7 on 278 degrees of fresadom

Multiple R-squared: O0.375,Adjusted R-equared: 0.368

F-statistic: 55.56 on 3 and 278 DF, p-value: <2e-16

Im.B <- Im{y = x_1 +x_ 2 + I(x. 1"~ 2) # I(x_.2 ~ 2)} # Multiple guadratic regression.
gummary{1lm.5)

Call:



In(formula = y © x_1 + x 2 + I{x_1°2) + I(x_2°2})

Residuale:
Min 10 Median 20 Max
-180.8 -48.6 -16.1 38.1 268.0

Coefficienta:
Estimate Std. Error t wvalue Pri>|t])
(Iﬂtercap't} 858.49681 38.1671 2.32 0.021 =

1 0.4783 1.6626 0.29 0.774
x 2 =1.5982 3.3287 -0.60 0.543
I{x 172) 0.0176 0.0186 0.54 0.346
I{x_2°2) 0.20563 0.0318 2.24 0.026 =

Signif. codag: O '"wd' 0.001 "4 0,01 "' Q.05 *." 0.1 ' " 1

Residual standard error: V0.5 on 277 degrees of fresdom
Multiple R-squared: 0.38,Adjusted R-squared: 0.371
F-statistic: 42.4 on 4 and 277 DF, p-value: <2e-16

In.6 <~ Im(y = x.1 + 1.2+ I(x1~2) + I(x.2" 2) + 1_1:x_2)
gummary (1m. 6}

Call:
In(formula = y ~ x 1 + x 2 + I{x 1°2) + I(x_272) + x_1:x 2)

Residuale:
Min 10 Median 20 Max
-178.7 -48.9 -16.1 3B.0 265.7

Coefficients:
Eetimata Std. Error t wvalue Pri>|t])
fIﬂtEI'capt] 89.0739 38.4006 2.32 0.021 w

x_1 0.4874 1.6695 0.30 0.766
x_3 -2.0870 3.3784 -0.62 0.637
I{x_172) 0.0145 0.0264 0.55 0.b84
I{x_2"2] 0.1521 0.1228 1.56 0.119
x_1:x 2 0.0137 0.0843 0.16 0.872

Signif. codes: O "##%' 0.001 '+%' 0.01 's' 0.0 '.' 0.1 ' " 1

Residual standard error: 70.6 on 276 degrees of fresedom
Multiple R-equared: 0.38,Adjusted R-squared: 0.3863
F-statistic: 23.8 on & and 276 DF, p-value: <2e-16

# Plotting a surface that goes through the cloud of points in 3d.
# Suppose we decided that the best model is the most compler model, above:
Im.e <- Im(size " diverg + rotate 4 I{diverg~2) + I(rotate™2) + I(diverg * rotate})

x <- seq(min(rotate), max(rotate), length
y <- seq(min(diverg), max(diverg), length

100 # z and y simply define a
100) # grid in the z-y plane.
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f <- function(x, y) {
r <- lm.e$coeff[1] + lm.e$coeff[2] * x + lm.efcoaff[3]*y
+ Im.efcoeff[4] * x = 2 + Im.efcoeff(5] # y = 2 + lm.e$coeff[E] * x * y

1

y.fit <- ooter(x, y, IJ * values of the surface,

o
(2"
hat 's what outer() does. Look it up.

library{lattice) # Loading the library thai comtains the function cloud().
# Making o 3d plot of the points of ri
cloud(y.fit, type = "p", ecreen = list{z = 10, x = =70, y = 0))

# Note that in spite of the nonlinearity of the regression funciion
# itself, i.e. with quadraiic and an interaction terms, the surface is
# mostly planar in the range of our data (i.e., = and g/

o ———
row

Here is a discussion of all of the above results based on the R? values: It seems like
1. Rotate is a better predictor of size than diverge.

2. The two of them together make for an even better model.

3. Quadratic terms for each, make the model even better, but not by much

4. R? pgoes from 0.3620 to 0.3800.

5

. An interaction term, without quadratic terms, gives a model that is comparable to what we got
from a quadratic model with no interaction.

6. Quadratic and interaction terms, together, “seem” to give the best model.

Note that R” increases as the complexity of the model increases (adding more terms). The main
question (which can be addressed only qualitatively at this point) is this: is the gain in R® big enough
to warrant the new term, lmowing that a new term can lead to over-fitting. In thi=s example, the gain
from R? = 0.3629 to R® = (.3800 is probably NOT worth the risk of overfitting. So, we should keep
the simpler model. That's called the principle of “Occam’s Razor," which posita that one should go
with simpler things.



anova(lm.&)

Analysis of Variance Table

Hesponsa: y

Df Sum Sq Mean Sq F value Pr(>F)
G 2l | 1 6038253 603828 121.06 < 2e-16 %%
x_2 1 202084 202064 40.51 0.00000000081 s+
I{x 12} 1 13086 13086 2.562 0.108
I{x 2°3) 1 24838 24838 4.98 0.026 *
b 2k [ caar' 1 131 131 0.03 0.872

Residuale 276 1376731 4388

Signif. codeg: O 'wes' 0,001 'ee 0,01 ‘& 9.06 . G100 "D

In the anova() output, there is an S8 term for each term in the regression equation, followed by
an 55 term for “Residuals.” The latter is what we have been calling SSE (or SSMP;M-H;]; g0, where
8 85 zplained! It can be obtained by adding the other 55 terms. The reason R produces separate
terms for each term is because R performs what is called sequential analysis of variance, which
i= a bit different from what we do. In fact, these 55 terms will change depending on the order of the
terms in the regression equation!

It's important to realize that all of these S8 terms are measures of variability. Specifically, 55T is
the numerator of the sample variance of the ¥'s, 55.:pqined 18 the numerator of the sample variance
of the predictions, and SS,nerplained (SSE) I8 converted to variance when it's divided by n— (k+1),
where k i the number of parameters in the regression model. You can confirm these:

y_hat <- predict(lm.8) # From 2.3
o <- nrow{dat)
{n - 1) » var(y_hat) # 843948 = 603829 + 202064 + 13086 + 24838 + 131 = 55_explained

[1] 843348

3.8.1 Prediction on New Data

The best way to do prediction on new data is to just attach the new data to the bottom of the old
data. Suppose the new data consista of the following 2 case:

Iy =33, T--_-;:E
I 235, 1-3:14

Then we can do the following:

n <- nrow{dat} # number of cases ir
new_1 = c(33, 8, NA) # y = NA
new_2 = c(36, 14, FA)

new.dat = rbind(dat, new_1, mew_32) # Using row-bind to attach new data fo old data

# Tm +ha mnamrt Tdang L A e al e Tm JF Fai* Am *ha Fasod N =y oD
- ¥ e Rext Lina ue ragaveLap M.4, DUE ON TAE J2TSs e GoIED

Im.7 <- Im{y ~ x.1 + 2.2 + x 1:x 2, dat = new.dat(1:n, 17 & NOTE: dat=new.dat[1:n,]
pummary{lm.7) # Same as Im.4
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Call:
ln(formula = y ~ x_1 + x_2 + x_1:x_2, data = new.dat[1:n, 1)

Residuale:
Min 10 Median 30 Max
=16¥.1 =E0.8 -=14.2 38.6 261.0

Coefficients:
Estimate Std. Error t wvalue Pr(>|t|)
fIﬂtarcapt) T1.6091 34,7693 2.08 0.040 =

e 1241 | 0.198% 0.8217 0.22 0.829
x_2 1.0812 2.0263 0.52 0.601
x l1:x 2 0.1030 0.0453 2.37 0.024 =

Signif. codeg: O "wss' 0,001 'w«' 0.01 "#' 0.06 '.' 0.1 ' " 1

Residual standard error: 70.7 on 278 degrees of fresedom
Multiple R-squared: O0.375,Adjusted R-squared: 0.368
F-statistic: 55.6 on 3 and 278 DF, p-value: <2e-16

colnames{new.dat) <- c("x_1", "x 2", "x_1:x_2")
predict(Im.7, newdata <- new.dat[(n+1): (m+2}, 1} # Predict the last 2 cases.

-

283 284
113.8 143.9

3.9 Collinearity

Another distressing issue that arises in multiple regression 5 collinearity, i.e., a linear association
between the predictors themselves. One reason collinearity is distressing is that it renders the re-
gression coefficients uninterpretable; le., a given beta can no longer be interpreted as the average
rate of change of y with respect to a unit change in ¢ with everything else held fived. Insisting on
that lind of interpretation, in the presence of collinearity, can lead to wrong (or even absurd) conclu-
sions. Collinearity also makes the predictions more uncertain, but here we will focus on the effect of
collinearity on the regression coefficients.

# To that end, we'll write an B function, which is r
# of code intended to be used over and over again.
make.fit <- function(r) {

.=_.
=
=™+
=
5
=

k=]
o
(=]
o+
o
L=

=]
m
[
-
-
m
En

# The function first makes daia on ¢ 1, o.2, and gy, with collinearity
# (i.e2., correlation betueen z_1 and = 2) equal to T.
# The input of the fumciion is r (i.e., correlaiion beiween m 1 ond @ 2.
# NOT between y ond anything).
# The funciion then fits that datas using y, aond refurns some siats about
# the estimatied regression cogfficients

library(MASS) # This library contains murnorm(); see below.

i
:f m

set.seed(1} # Ensures reproducibl

n <- 100

# The R function murnorm() below takes o sample from a multivariate normal,

# which i3 a higher-dimensioncl analog of the normal distribution.

dat <- wmvroorm(n, rep(0, 2}, matrizlec(l, r, r, 1), 2, 2))
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x_1 <~ datl, 1]

x_2 <- datl[, 2]

¥<-1+2w%x1+3wx2+rnormin, 0,2) # Generate y, and add noise.
dat <- data.frame(x_1, x_2, y) # Here is the whole daia.

plot (dat)

Im.1 - Im{ 7 " x.1 + x_2) # Fit a plane through the data.

# return{im.1) returns the whole R object Im.1.

# return(summary(lm.1)) returns only the summary resulis.
return{sumary(lm.1)$coeff) # Returns only the regression coefficients.

}

# Ezamining dofa ond the regression coefficients for different amounts of
# collinearity.
make.fit(0) # No collénearity.

Estimate Std. Error t walue Pri»|t|)
(IﬂtBI‘CEP‘t} 1.081 0.2104 4,804 2.60%a-06
x-1 2.107 0.2190 9.6823 8.760e-16
TR 3.042 0.2336 13.028 4.9680-23

make,.fit(0.7) # Some collinearity.

Estimate Std. Error t walue Prir|t|)
(Intercept) 1.061 0.2104 4.954 2,.608e-06
x-1 2.161 0.30986 6.979 3.684e-10
p o 2.886 0.30898 9.310 4.141a-15

make.fit(0.8) # Exireme collinearity.

Estimate Std. Error t value Pri>|t])
(IﬂtBI‘CEP‘t} 1.081 0.2104 4,894 0.0000026081
e i | 2.261 0.5035 4,488 0.0000199248
I 2 2.783 0.5042 5.519 0.0000002837

make.fit(0.593)

Estimate Std. Error t value Pri>|t|)
(Intercap‘t} 1.081 0.2104 4.9341 0.000002609
1.1 4.412 4.8973 0.9009 0.369846805
I 2 0.830 4.8976 0.1286 0.897310878
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When collinearity is extreme, not only are the standard errors huge, but the estimated regression
coefficients themselves () are way off. As collinearity increases, the regression coefficients become
more uncertain, and so we are unable to interpret them, like we would if there were no collinearity.
The regression equation is still OK to use for predictions. But, of course, the predictions will be
less certain as well. MNote that in practice we don't control /adjust the data or the collinearity; all we
gee are the scatterplots, and based on the scatterplots between the predictors, we decide how much
collinearity there 5. For example, for the hail data:

plot{dat)
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In the scatterplots, the one for x; versus x5 (or vice versa) suggests some collinearity; it is not
extreme, but it is present. As such, we have to be cautious in interpreting the regression coefficients.
But the regression model is still olay for making predictions (as long as it does not overfit, of course).

3.10 Plotting Curved Fits on a Scatterplot

We plotted polynomial fits, but the “curves” were just the result of connecting points with straight
lines, and as a result, the “curves™ did not look smooth. Here is a way to get a smoother looking fit
on the scatterplot.

dat <- read. table("hail _dat.txt", header = T)

I_l L= 'd.at[:. 1]
I_E <= dﬂt[g 2:l

:f = dﬂt[, 3] LI E 34 g
Im.g <- Im{y = x.2 + I(x 2 = 2})
lm. g$coat g e the regressio
(Intercept) b i I{x_272}
116.3518 -2.2682 0.2827

I <- seqimin(x_2), max(x_2), .01) ¢

y.fit <- 1m.g$coeff[1] + Im.gfcoeff[2] = x + 1m. g$cueff (3] = x°
plet(x_2, y, cex = 0.5)

pointalx , y.fit, col = "red", type = "1}
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# Alternatively, o fancier way is as follows.
x <- matrix(eeq(min(z_2), max(x_2), .01}, byrow = T} # Generate a fake = .
colnames(x) <- "x_2"

plot{x_2, )

linee(x, predict(lm.g, newdata = data.frame(x)}, col=2)
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4 Sampling Distributions of the Sample Mean and Median

4.1 Sampling Distribution of the Mean
4.1.1 Normal Population

Instead of taking samples from a normal population, using rnorm(), we are going to take ONE huge
sample from a normal population, using rnorm( ), and then just treat it as our population. The main
reason for this is mostly to set the stage for something called “bootstrapping,” which we will study
later.

B <- 100000 # Let N be the populatdion siza.

pop <- roorm{N, 1, 2) # Toke o rondom sample ond treat 4t as pop.
pop.mean <- mean{pop) # This ds mu, the population mean.

pop.ed <- sd(pop) # This is sigma, the pop standard deviation.
pop.median <- median({pop) # Get the population median, for later.
c{pop.mean, pop.sd, pop.median) # Print them for comparisom, below.

[1] 0.9358 2.0070 1.0022

hist{pop, breaks = 400) # This shows that the population is preitiy normal.
# Experiment underlying the saompling distribution.

n.trial <- 10000 # Take 10000 samples of

eanple.size <~ 10 # size 10 (d.e., small) from the j
gample.stat €- mmeric(n.trial} # Creaie space te store

= ok
[1-]
[

0000 sample means.
for (i in 1:n.trial) {

gamp <- sampla(pop, eamplae.eize, replace = T} # Taoke o sample (with replacement).
pample.etat[i] <- mean(eamp} # Compute each sample’s mean.

J}J’Jean(sampla.statj # Compare mean of sample means

[1] 1.002

pop.mean # with the population mean.

[1] 0.9958

ed{sample.stat) # Compare the standard deviation of sample means
[1] 0.8333

pop.ed # with the pop siandard deviation.

[1] 2.067

pop.ed / sqrti{eample.eize} # But compare with (pop sid dew)/sgri(n)

[1] 0.6347
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According to the Central Limit Theorem (CLT), the sampling distribution of the sample mean

should be normal. To confirm:

hist({sample.etat,breaks = 40)
qquorm(sample . stat)

Histogram of sample.stat
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Ag the rample size increases, the mean of the sample means gets pretty close to the population
mean, and the standard deviation of the sample means gets pretty close to the EEEEI. So, the CLT

15 confirmed.

4.1.2 Non-normal Population

¥ <- 100000
pop <- rgamma(N, 1, 1)



pop.mean <- mean(pop)
pop.ed <- sd(pop)

pop.median <- median(pop)
c{pop.mean, pop.sd, pop.median)
[1] 0.9368 0.9952 0.6955

hist{pop, breaks = 400) # The distribution of sample means looks non-nermal.

n.trial <- 10000 # Take 10000 samples of
pampla.siza <- 10 # sdize 10 (di.e., small) from the population.
pample.stat <- mmeric(n.trial} & Space for storing the 10000 sample means.

for (i in 1:n.trial) {
gamp <- sampla(pop, Bample.eize, replace=T) # Take a sample (with replacement).
gampla.etat[i] <- mean(eamp) # and compuie cach sample's mean.

}

mean{gampla.stat) # Compare meagn of sample means with population mean.
[1] 0.93985

pop.mean

[1] 0.9%68

ed(semple.stat) # Compare the sd of sample meons with population sd.
[1] 0.3143

pop.ed

[1] 0.8552

pop.ed / sqrt(eample.eize) # Compare with (pep sd)/roet(n).

[1] 0.3147

hist{sample.stat, breaks = 40)
qgnorm(sample.stat, cex = 0.5)
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When the population i NOT normal, for small samples (10) the sampling distribution of the
sample mean resista looking normal; but with larger samples (100), it is normal even though the
population is not normal.

4.2 Sampling Distribution Population Median
4.2.1 Non-normal Population

B <- 100000

pPop <- rgamma(N,1,1)

pop.mean <- mean(pop)

pop.ed <- sd(pop)

pop.median <- median(pop)
cl{pop.mean, pop.sd, pop.median)



(1] 1.0014 1.0009 0.8937

hist{pop, breaks = 400}

n.trial <= 10000 # Toke 10000 samples of
ganple.size <- 10 # size 10 (d.e., small) from the population.
pample.stat <- mmeric(n.trial} # Space for storing the 10000 sample medians
for (i in 1:n.trial) {
gamp <- sample(pop, samplae.eize, replace = T) # Taok
sample.etat[i] <- median(samp) # Compute each sampl

1

mean({gample.stat) # Compore the MEAN of sample MEDIANS with pop MEDIAN

1 . 173 1
a aamnla i +h  eon i~ an ¥ J
3 SampLe (WiA repLacement.).

[1] 0.7469
pop.madian
(1] 0.6837

ed{semple.stat) # Compare the sd of sample MEDIANS with population sd.

[1] 0.3094

pop. ed

[1] 1.601
i Al g +F F h oz W Tm fi 1 ¥ T4z T +ha =« Tz ME AN
# Note that the formula sigmasroot (n) applies only to the sample MEAN

hist(sample.stat, breaks = 40)
qqnorm{sample.stat, cex = 0.5)

Histogram of pop Histogram of sample.stat
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The sampling distribution doesn’t look too normal. But if the sample sige is relatively large, the
distribution of a bunch of sample medians, taken from even a non-normal population, i= still normal.
Most. statistics (e.g., sample mean, sample median, sample standard deviation, ...) ultimately end up
having a normal distribution, but some require a larger sample size.



5 Confidence Interval

Now, we're going to move on from the sampling distribution, and develop the notion of a Confidence
Intervals (CI). First, we will show that the formula for the CI for the population mean actually does
what it is designed to do. Recall that the formula for the confidence interval (CI) for the population
mean is given by: -

T+z*. " (4)
and it is designed to cover the population mean in 35% of samples taken from the population. One
nontrivial part of this formula is the "n, algo called the standard error (std err) of the sample mean.
It's nontrivial because, first we have to approximate the population std (7) with sample std, but more
importantly, we have to use math to derive it. For many statistics (other than the sample mean), the
std error is difficult to derive mathematically. The other nontrivial part of the CI formula is the z*,
because it 15 based on the fact that the sample mean has a normal distribution. Some statistics do
not.

The second task is to show that we can actually get similar answers, WITHOUT using the formula
for the atd err of the mean, nor the assumption of normality. This i= important when simple formulas
for the std err do not exist, e.g., for sample median. The main idea i= called The Bootstrap: We
basically treat the single sample that we have in a realistic situation as if it were the population!
So, instead of sampling from the population (i.e., what we did above), bootstrap re-samples from the
*zample.* It's like magic, but vou'll see how it works below.

There are different kinds of CI, e.g., 1-sample, 2-sample, 1-sided, 2-sided, large-sample, small-
sample, ete. And yet other kinds of CI will be covered as we proceed forward into chapters &8, 9, 10,
and 11. In the following, you will also come acrosa words like " p-value,” or “hypothesis.” For now,
you may simply ignore them. Ch® will introduce that method, which is equivalent to the CI method.

5.1 Confidence Interval for Population Mean

As explained at the start of the section on Sampling Distribution, instead of taking samples from a
normal population, using rnorm(), we are going to take ONE huge sample from a normal population,
using rnorm(), treat it as our population, and then use the R function sample() to take samples from
it. The main reason for this is to set the stage for something called “bootstrapping.” which we will
study later.

rm{liet = 1e{all = TRUE))
gat. Bead(1)

N <= 100000

pop <- ronormfW, 1, 2}

pop.mean <- mean{pop)
pop.ed <- sd(pop)

pop.median <- median(pop)
c{pop.nean, pop.sd, pop.median)
(1] ©.9965 2.0070 1.0018
hist{pop, breaks = 400)

gampla.size <- 200 8 81E
pample.trial <- sample(pop, sample.size, replace = T)
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5.1.1 Calculating CI Using Formula
pample.stat <- mean(sample.trial) # Sample mear
gtd.err <- sd({sample.trial) / uqrt(sampla 51291 # Caleulate the standare
gample.stat - abs(gnorm(.05 / 2)) % std.err # Note z_star
[1] D.7777
gample.stat + abs(qnorm(.05 / 2)) # gtd.err # Sign is correct!
[1] 1.368
X 5 i L 3 5 5 £ i

5.1.2 Calculating CI Uzsing Built-in Function

6]
=
]

t.test(sample.trial, alternative = "two.sided", conf.leve 0.85])

One Sample t-test

data: sample.trial
t=7.1, df = 189, p-value = Ze-11
alternative hypothesie: true mean i= not equal to O
95 percent confidence interwval:
0.7758 1.3702
gample estimates:
mean of x
1.073
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t.test (sample.trial)$conf. int [1:2]
[1] 0.7759 1.3702

Note that answers from the two methods (by formula and by computer) are very similar. The
interpretation of C.I. is that we can be 05% confident that the true mean resides in this interval.

5.2 Coverage of a Confidence Interval

In practice, you will have only one sample (samp) (and not the population (pop)), and so you will
build only one CI. But here we want to confirm that the CI, the way we compute it {i.e.. with our
formulas or with t.test()) covers the population mean the correct percentage of time. This is what
a CI is designed to do: to have the correct coverage.

To do so, we will draw n.trial = 100 samples of size sample.sige = 90 from the normal population,
above. For each sample, we will construct the 35% CI and we will make a plot that shows all 100 Cls
then count how many of them cover the population mean.

rn{list = 1s{all = TRUE))
get.eead(1)

B <- 100000

pop <- roormfW, 1, 2}

pop-mean <- mean(pop)

pop.&d <- sdipop)

pop-median <- median(pop)
cl(pop.mean, pop.sd, pop.median)

[1] 0.9955 2.0070 1.0018

hist{pop, breaks = 400, main = 'Histogram of Population')
n.trial <- 100 # Number of samples dray from population

= 80,

-F

L.

s

gampla.size <- 80 # Size of each sample

CI <- matriz(orow = n. 'l:rlal ncol = 2) # Create space fo store m.trial CIs.

for (i in 1:n.trial) {
sample.trial <- sample(pcp, sample.size) # For each sample/trial,
CI[i, ] <~ t.test(sample.trial)$conf.int[1:2] # compuie (and keep) only CI

1

count <- 0 # Count number of CIs that cover mu
for {i in l:n.trlal} {
if (CI[i, 1] <= pop.mean k& CI[i, 2] >= pop.mean) {
count <- count + 1

1
1

count

[1] 87



plet{e(l, 1), CI[1, 1, ylim = (0, 2), xlim = c(f, 101), ylab = "CI", xlab = '',
type = mymy
for (i in 2:n.trial) {
lines(cfi, i), CI[1, 1) # Draw CIs (veridcally)
}

ablina(h = pop.mean, col = "red", lwd = 3) # The populaiion mean (horizontally)
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5.3 Two-Sample, Two-Sided Confidence Interval

The following is data from a Statistics class, when students were asked their gender, and what per-
centage of time they attend class. We will assume percentage i normally distributed, although it is
not.

dat <- read.table('attend_dat.txt', headar = T)

attendance <- dat[, 1]

gendar <- dat[, 2]

pa.boy <- attendance[gender == 0] # Perceni of time attending class for boy:
pa.girl <- attendance[gender == 1] # Percent of time aifending class for girls

n.boye <- length(pa.boy) # Number of boys. Same as sum(y == 0)
n.girle <- length(pa.girl) # Number of girls. Same as sum(y == 1)

# The sample mean of these attendance rates is higher for boys than girls
mean(pa. boy) -

[1] BT.ET

mean{pa.girl)

[1] 86.4

Suppose you wonder if the two true/population means (of attendance rate) are different, then,
you need to build a 2-sample, 2-sided CI. We will first start by computing 1-sample, 2-sided Clzs for
each mean:



t.teet (pa.boy)$conf.int [1:2]
[1] 78.86 85.19
t.test{pa.girl)$conf. int [1:2]
[1] 81.83 80.87

Given the huge overlap between these two confidence intervals, (and given that the two groups -
boys and girls - are independent), we can conclude that the data does not provide sufficient evidence
to conclude that the attendance rates of boys and girls are different.

Comparing two Cls is not the most elegant way of answering the question. If the comparison of
two means (or proportions) is all we care about, then we should compute the CI for the difference
between the population means (or proportions), L.e., a 2-sample CI for the difference between means.

t.teet(pa.boy, pa.girl, alternative = "two.2ided")

Welch Two Sample t-test

data: pa.boy and pa.girl
t =0.2F, df = 51, p-value = 0.8
alternative hypothesie: true difference in means ie not equal to 0
95 percent confidence interwal:
-7.b5E 9,891
gample estimates:
mean of X mean of y
87.5T B6.40

There are two interpretations:

1. We can be 05% confident that the difference between the true/population means is between
-7.550 and 9.801.

2. There iz a 95% probability that a 95% CI for the difference between the true means, computed
from a random sample, will include the difference between the true/pop means.

Corollary:

The fact that the 2-sided CI, (-7.558, 0.801), includes zero implies that we CANNOT tell if there
is a difference betwesn the two proportions. We just cannot say anything. Note, it would be WRONG
to conclude that there i8 NO difference between the true/population means.

5.4 Two-Sample, One-Sided Confidence Interval

Suppose you are NOT interested in whether there i2 a difference between the attendance rates of
boys and girls. Instead you are interested in a “wealer” question, namely, is the attendance rate for
boys higher than that of girls? Denote gy = true/pop mean attendance rate for boys. ps = true/pop
mean attendance rate for girls. Then you must build the lower confidence bound for p; — go. (Or
equivalently an upper confidence bound for gy — 1y ).

t.test(pa.boy, pa.girl, alternative = "greater")
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Interpretations:
1. We are 05% confident that g, — pg is larger than -6.11.

2. There is a 95% probability that a random 95% lower confidence bound for the difference will be
lower than the true difference.

Corollary: This “interval” still includes zero. So, there is no evidence for p; being greater than ps.
Recall that you can compute a lower confidence bound for each of p; and pg separately:

t.test(pa.boy, alternative = "greater")$conf.int [1:2]
[1] 81.24 Inf
t.test(pa.girl, alternative = "greater")$conf.int[1:2]

[1] 82.67 Inf

Example

We will compare the grades on a statistics midterm of those who pick up their tests within the first
one or two weeks after the test to those who do not pick it up in that period of time. We use this as
a proxy for attendance. The following analysis is conducted to see if there is a statistically significant
difference between the means of the two groups.

attend <- c(9.0, 14.0, 15.0, 12.5, 13.5, 14.5, 12.5, 8.5, 17.5, 9.5, 12.0, 11.0,
14.0, 14.5, 14.0, 21.5, 12.5, 10.5, 17.5, 6.0, 10.6, 17.5, 16.5, 19.0,
18.0, 16.5, 13.5, 71.5, 10.5, 17.0, 18.5, 12.0, 15.0, 17.5, 11.E,
15.6, 17.0, 17.0, 20.0, 15.5, 12.0, 13.0, 23.0, 11.5, 14.0, 13.0, 22.5,
B.E. 110 8.6, HLE, AT:0: 11,8, 17:5; T.5, 2.0, 14 E;B.E, 18.0,
16.5, 18.5, 10.5, 16.5, 14.5, 13.5, 14.6, 12.0, 17.0, 13.0, 11.0, 12.5,
9.0, 18.0, 16.0, 16.0, 11.0, 7.0, 23.%, 13.0, T.H, 14.5, 13.0, 18:E,
13.0, 18.5, 10.0, 20.5, 10.5, 17.5, 13.0, 19.5, 10.0, 13.0, 18.5, 10.5,
14.5, 11.0, 14.5, 7.0, 7.0, 8.0, 16.0, 13.0, 18.6, 16.0, 17.0, 18.0,
10.5, 15.0, 8.5, 10.0, 14.0, 16.0, 12.5, 13.5, 17.0)

non.attend <- ¢(3.0, 12.5, 8.5, 18.5, 5.5, 18.5, 7.5, 13.5, 6.5, 17.0, 11.5, 13.0,

13.0)

To see if the data provide evidence for the claim that g1 = mean of attend is higher than gz = mean
of non.attend, the appropriate C1 iz a lower confidence bound for gy —pig, which is equivalent to testing

Hg:py—pa <0
Hy @y —pg >0

t.test({attend, non.attend, alternative = "greater", conf.level = 0.95)

Welch Two Sample t-test

data: attend and non.attend
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t=1.8, df = 14, p-valus = 0.05
alternative hypothesie: true difference in means ie greater than 0
956 percent confidence interval:
0.04545 Inf
gample estimates:
mean of x mean of y
13.58 11.42

This means that we can be 95% confident that the true (ie. population) mean grade of the
attending students is higher than that of the non-attending students by at least 0.045. Because 0 is
not included in the CI, the “corollary™ conclusion is that the mean grade of attending students is
higher than that of the non-attending students. One often says that the difference i= “statistically
gignificant.” (The same conclusion follows from the p-value; it's smaller than o = 0.05, and so we can
reject Hy @ g < pp in favor of Hy @ gy > ps.)

The result i= statistically significant, but is it physically significant? That’s a different question!
In other words, how much higher is the mean of the attendees, and do we care? To answer that,
look at the sample means of the two groups (last line of the output). The attending students’ grade
= % + 100 == 22% higher than that of the non-attending students. That’s big enough to be
considered physically significant.

It's important to note that statistical sipnificance and physical significance are two different
concepts. The difference between the two means may be statistically significant. but it may be so
small that no one really cares about it, i.e., it may be physically non-significant.

5.5 The t-distribution

All confidence intervals require knowing areas under distributions in order to get the correct z* and
t* in the CI formulas. Table 1 in the book gives areas under the standard normal to the left of any
mumber. Table 6 in the book gives areas under the t-distribution to the right of any number. Note
that z* and ¢* themselves are NOT given in these tables. z and ¢ (not starred) are what we compute
in the p-value approach.

In R, the analogs of pnorm(), gnorm{ ), and dnorm(), for the t-distribution are pt(), qt(). and dt().
For example,

poorm(l.645, 0, 1, lower.tail = T)
[1] ©.95
pt(1.645, df = B, lower.tail = F)

[1] 0.08044

qonorm{0.08, 0,1, lower.tail

= T:I
[1] -1.84K
qt(0.06, df = 5, lower.tail = T)
[1] -2.015
x <- egeqgf{=5, 5, .1} # z going from -5 ito +5 in |

63



y_1 <- doorm(x, 0, 1} # Siondard normal densii

y_2 <- dt{x, 2} lans i th df =

y_3 <- dt{x, 5} [ty with

plet{x, y_1, typa = "1", ylab = 'y'}

linee(x, 7.2, col = 3}

lines(x, y_3, col = 4)

legend('topleft', c('standard normel', 't with df = 2', 't with df = 4'},
text.col = c(1, 2, 4), bty = 'n"}

w el
= standard normal
o t with df =2
o | twithdf=4
> g 1l
il
L= et
< I I | I I
—4 —2 0 2 4
X

5.6 Confidence Interval When ¢ is Unknown (Small Sample)

We know that the sampling distribution of the sample mean is the normal distribution with parameters
poand o //n. And so, Ef% has a standard Normal distribution. However, if o, is unknown, then it
has to be approximated with the sample standard deviation s; which is fine, if the sample size is large.
However, for small samples, the approximation i poor, and so the sampling distribution of f__::_: does
not follow the standard normal, but rather the t-distribution with n — 1 degrees of freedom where
n is the sample size. To find the confidence interval, all we need to know is how to compute areas
under the t-distribution between two numbers, just like we what did with the normal distribution.
In R, we can replace gnorm(.05 / 2) with qt(0.05 / 2, sample.size - 1). The results will be
very similar if the sample size i= large since the t-distribution converges to normal as the sample size
n — oo, But for small samples (e.g., 20), the confidence interval caleulated using a t-distribution
will cover the population mean the correct number of times (if the population is normal), while the
normal confidence interval will not. For small samples taken from non-normal populations, we do not
have any formulas. We should use the bootstrap method instead; see below.
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5.7 Bootstrap: CI without formulas

We have confirmed in 4.2 that the CI computed with the formula & +z* - ﬁ has the correct coverage

property (about 05% of such CIs cover the true mean). But that conclusion & based on several
assumptions:

1. We know what z* to use in the formula.

2. We can approximate & with the sample standard deviation.

But for some statistics (e.g., sample mean) we don't even have a formula for a CL One solution
to that problem is Bootstrapping.

Example: Producing the Correct CI for Mean

Instead, of using the formula ’d(?:#’:' for the standard deviation of the sampling distribution of the
sample mean, we can actually build (though approximately) the sampling distribution itself. This is
done by taking multiple samples - called bootstrap samples - from the single observed sample! The
theory behind bootstrap argues that the std dev of this “sampling distribution™ i= a pretty good
estimate of the standard dev of the sampling distribution of the sample mean. Armed with this
appraximation to the sampling distribution, we can tale its appropriate quantiles to give us CI; after
all, # + 1.06 - % mark quantiles of the true sampling distribution). 8o, that's the idea: to build a
histogram of the sample statistic of interest by treating the sample as if it were the population.

Now, when it comes to testing the coverage properties of a CI for some parameter, recall that
we take multiple samples from a population already. So, in the bootstrap approach, we will have to
take multiple (bootstrap) samples from each of the samples taken from the population. For technical
reasons that we won't go into, the bootstrap samples must be taken with replacement.

rm(list = 1s(all = TRUE))

eet.eeed(1)

B <- 100000

pop <- rgamma(N, 2, 3) # Draw from gamma instead of normal
pop.mean <- mean(pop)

pop.ed <- sd(pop)

pop.median <- median(pop)

c{pop.nean, pop.sd, pop.median)

[1] 0.e659 0.4705 0.5530
hist{pop, breaks = 400, main = 'Histogram of Population')

n.trial <- 100
gample.size <- 80
CI <- matrix{mrow = n.trial, ncol = )
for (i in 1:n.trial) {
pample.trial <- sample{pop, sample.siza) # Take o sample

n.boot <- 100 # Number of bootsirap samples, from each sample
boot .stat <- mmeric(n.boot)
for (j in 1:n.boot) {



boot .sample <- eample(sample.trial, sample.size, replace = T)
# With replacemant
boot .etat[j] <- mean(boot.sampla) # Store the means

) £ 7 . - - - -
} # End of loop over beotstrap

CI[i, 1 <~ guantila({boot.stat, c{0.06 / 2, {1 - 0.06 / 2)}}
# CIfd,] <- ! B/ L /

cCimeanisampia. tT2ade

ok

sample. trial) + gnorm{. 05/2 ¥ oD, 50

= = O 5
# Fo 5/2) with g 5 ]
T L Creirhs cl
X L% L 00T + .-"I T 4] i ] i kg EE EYE
} # End of loc
count <- 0

for (i in 1:n.trial) {
if (CI[i, 1] <= pop.mean k& CI[i, 2] >= pop.mean)
count <- count + 1

]

count
[1] 95

plot{e(1, 1), CI[1, 1, ylim = c(&.3, 1.2), xlim
type = myny
for (i in 2:n.trial) {
lines(c(i, i}, CI[i, 1) # Draw CIs (veridically)

}

ablina(h = pop.mean, col = "red", lwd = 2) # Draw the population mean

{0, 101), ylab="CI", xlab = '',

Histogram of Population
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It may seem like the bootstrap method makes no assumptions, and that it will work all the time.
However, it turns out that it does have some problems. Some of the problems are addressed by
Schenker (1985). For example, he shows that the particular version we use above (called percentile
bootstrap) gives CIs which cover the population parameter less frequently than they should, especially
for small samples. For example, with a sample size of 20, a 90% CI will cover the pop mean around
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T8, of the time.

5.7.1 Confidence Interval for Sample Median

on.trial <= 100
gample.size <- 80
CI <- matrix(0D, n.trial, 2)
for (i in 1:n.trial) {
gample.trial <- =ample(pop,sample.size,replace=F)
n.boot <- 100
boot .stat <- mmericin.boot)
for (j in 1:n.boot) {
boot.sample <- sampleisample.trial, sample.size, replace = T)
boot.etat[j] <- median(boot.sample) # Median
1

CI[i, ] <- quantile(boot.stat, c(0.05 / 2, (1 = 0.05 / 2)))

}

count <- 0
for (i in 1:n.trial) {
if (CI[i, 1] <= pop.median &k CI[i, 2] >= pop.median)
count <- count + 1
)

count
[1] 98

plot{c(1, 1), €I[1, 1, ylim = (0.4, 1}, xlin = e(0, 101), xlab = '', ylab = "CI",
T’FPE = ||1||:|
for (i in 2:n.trial) {
linesf{cfi, i), CI[1, 1)
gbline(h = pop.median, col = "red", lwd = 2)

}
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Note that the number of times that the confidence interval covers the true median is cloge to 95,
In other words, the way we are computing a confidence interval for a population median gives us
confidence intervals that cover the population median the expected number of times. In practice,
when you have a single sample, and no population, you can use this bootstrap method to bunild a
confidence interval for the population median.

A quick partial fix to the problem of under-coverage is proposed by Charles Geyer:

http:/ /www.stat.umn.edu/gever /old /5601 /examp /percent.htm]

and it imvolves revising the CI line just a bit. The commented line in in the above code will let you
test this idea.

Reference

Schenker, Nathaniel {1985): Qualms About Bootstrap Confidence Intervals Journal of the American
Statistical Association, Vol. 80, No. 300 (Jun., 1985), pp. 360-361.



6 Hypothesis Testing, Confidence Intervals and p-values
6.1 Small Sample Confidence Interval (Unknown o)

For small samples. the sampling distribution of f—_j;—: 18 a t-distribution with n-1 degrees of freedom. To
compute that confidence interval, all we need to ﬁ:ncuw 15 how to compute areas under the t-distribution
between two numbers, which is similar to what we did with the normal distribution. To find *, we
just replace gnorm(.05 / 2) with £(0.05 / 2,sample.size-1).

In terms of coverage, the results will be very similar if the sample size is large (e.z., 100+). For
small samples (e.g., 10), the CI computed using a t-distribution will cover the population mean the
correct number of times, while the CI computed using the normal distribution will not.

Note that computing the confidence interval for small samples using the t-distribution assumes
that the population is normal. If the population i& non-normal, the bootstrap method should be
uzed inatead.

Bootstrapping should be used when:

1. The population is not normal and the sample size 1= small.

2. No formulas for computing standard errors of the statistics of interest exist.

6.2 Confidence Intervals and Hypothesis Tests

In general, this is the way to decide how to set up the null and alternative hypothesis: Convert the
statement of the problem to make it sound like “Does data provide evidence for blah?™ Then that
“blah” i what should go into H;. The reason is that the hypothesis testing procedure starts by
assuming whatever is under Hy. And so, if you are trying to see if the *data* provide evidence for
X, then vou should not start by assuming X is true. Similarly, if the problem asks “Does the data
contradict blah™, then the blah should go into Hy.

Some problems don't readily lend themselves to that kind of translation. They ask something like
“Test the prior belief that blah.” In that case, the blah should go into Hy. The reason is similar to
what I sald above: Data provides evidence for H,, against Hy. And “prior™ means prior to data. So,
any “prior belief” should go into Hy.

So far, we have learned 3 ways of constructing confidence intervals and doing hypothesis tests:
1. Using CI formulas.
2. Using bootstrapping.
3. Using the R function t.test().
The following example will focus on the last method.

Example 1: Exercise 8.28

Fusible interlinings are being used with increasing frequency to support outer fabries and improve
the shape and drape of various pieces of clothing. The article “Compatibility of Outer and Fusible
Interlining Fabrics in Tailored Garments” (Textile Res. I., 1007: 137777142) gave the accompanying
data on extensibility (%) at 100 gm/em for both high-quality fabric (H) and poor-quality fabric (P)
BpEcimens:

H ¢~ c(1.2, 0.9, 0.7, 1.0, 1.7, 1.7, 1.1, 0.8
1.4, 1.3, 1.8, 1.6, 0.8, 2.0, 1.7, 1.8
P ¢<- c(1.6, 1.5, 1.1, 2.1, 1.5, 1.3, 1.0, 2.8

N O G TR A PO T
oA =r
)
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Suppose the problem asked us to estimate the true means for the the two populations separately.
Then, we would compute 2-sided, 1-sample, Cls for each of the two population means.

t.test (H)

One Sample t-test

data: H
t =17, df = 23, p-valus = 3e-14
alternative hypothesie: true mean is not equal to O
95 percent confidence interwal:
1.321 1.696
gample estimates:
mean of x
1.508

t.test(P)

One Sample t-test

data: P
t =8.6, df = 7, p-value = 0.00006
alternative hypothesie: trus mean is not equal to O
95 percent confidence interval:
1.144 2.031
gample estimates:
mean of x
1.588

However, if we were only comparing the means, we would not be able to tell much about the
difference in the true means because there is a lot of overlap between the two Cls.

boxplot(H, P, names = c("high-guality", "low-quality"))
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If we are intereated in the difference between the two means, it's better to compute a 2-sample CI,
instead of comparing two 1-sample Cls.

Suppose the problem asks “Does the data provide evidence to support the clalm that the two
populations have different means?" Then, we need to construct a 2-sided, 2-sample, CI. The two
hypotheses are:

Hy: pg —pp =0
Hy: pg —pp #0

t.teet(H, P, alternativa = "two.sided"}

Welch Two Sample t-test

data: H and P
t =-0.38, df = 10, p-value = 0.7
alternative hypothesie: true difference in means i& not equal to O
95 percent confidence interwval:
-0.5404 0.3820
gample estimates:

mean of X mean of y
1.608 1.588

Note that the 35% CI includes zero. Also note that p-value = 0.05. Both of these observations imply
that we cannot reject the null hypothesis that the two means are equal. One often says “there is no
statistically significant difference between the means of H and P." Keep reminding vourself that this
does NOT mean that there is no difference; it just means that if there is a difference, your data is not
seeing it.
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Also note that the sample mean of H is smaller than the sample mean of P. Suppose the problem
had asked us if the data provide evidence that the population mean of H is less than the population
mean of P. Then the appropriate “interval” would be a (1-sided ) upper confidence bound for pg —p p.
The two hypotheses would be:

Hy: pg —pp =0
Hy: pg—pp <0

t.test(H, P, alternative = "legs")

Welch Two Sample t-test

data: H and P
t =-0.38, df = 10, p-value = 0.4
alternative hypothesie: true difference in means ie lese than 0
95 percent confidence interwal:
-Inf 0.25866
gample estimates:
mean of x mean of y
1.608 1.588

The upper confidence bound i= positive, and so the difference f}.u,r — pip) may be positive. So, the
data do NOT provide evidence that pg — pp < 0. Although the p-value is lower than the 2-sided
p-value above, it's still not less than o = 0.05. S0, the conclusion is that the data do NOT provide
evidence to reject pg — pp > 0 in favor of H;. Either way, the conclusion is the same.

Note that this (1-sided) upper confidence bound is smaller than the upper limit of the 2-sided CIL.
This is consistent with what confidence intervals are supposed to do, i.e, cover the true parameter
some percentage of the time.

Had the problem asked us if there is evidence for py — pp > 0, then the hypotheses would be:

Hy: pg —pp <0
Hy: pg—pp >0

t.test(H, P, alternative = "greater")
2

Welch Two Sample t-test

data: H and P
t =-0.38, df = 10, p-value = 0.6
alternative hypothesie: true difference in means ie greater than 0
95 percent confidence interwval:

-0.4543 Inf

gample estimates:
mean of x mean of y

1.508 1.588

P e nd 4 SpeA T R el S T T Ol T T e T T S e | A by B [y e e
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t.test (H, P)$p.value



[1] 0.T115

# If the above command was placed inside a loop, R will not print the values on

# the scraen, unless you put the whole thing in a print(), i.e.,
print(t.test(H, P)$p.valus)

[1] D.7116

Example 2: Paired and Unpaired Two-sample t-test

Suppose the data (from example 1) on H and P were of the same size. Assume the data on H was
just the first 8 cases. Suppose the question had asked “is there a difference?”

H <- H[1:8] # Keep only the first 8 cases in above H.
boxplot(H, P, names = c("high-quality", "low-quality"))
t.test(H, P, alternative = "two.sided")

Welch Two Sample t-test

data: H and P
t =-1.3, df = 13, p-value = 0.08
alternative hypothesie: true difference in means ie not equal to 0
95 percent confidence interwval:
-0.93361 0.05851
gample estimates:
mean of x mean of y
1.150 1.688
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Now suppose the problem had said that the two sets of measurements, H, P, are taken on the same
unit of study. For example, the two measurements are made on a given fabric, but in two different
conditions, say wet and dry. Then we are dealing with paired data. Then the appropriate test would
be:

t.test(H, P, paired = T, alternative = "two.sided")

Paired t-taest

data: H and P

t=-1.8, df = 7, p-value = 0.1

alternative hypothesie: true difference in means ie not equal to 0
95 percent confidence interwval:

-1.0262 0.1502

ganple estimates:
mean of tha differences
-0.4375

The CT is now much wider and the p-value is much larger. So, the pairing of the data meansa that
it provides even less evidence than otherwize. This makes sense in this example, only becanse the
data on H and P are not paired anyway. You can see that they are not paired by looking at the their
scatterplot, and noting that there is no correlation:

plot(H, P)
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But, if the data truly were paired, the CI for the paired data would be narrower than that of the
unpaired data. Similarly, the p-value for the paired test would be smaller than the p-value from an
unpaired test. That makes sense too, because by taking the difference between two columns of data,
all the wariahility within each column i= “subtracted out,” and so the test can focus only on the
variability in the difference between the two columns, which is all we really care about anyway.

Note that comparative boxplots of paired data are misleading. For example, it’s possible that the
boxplots will show a huge overlap, but each case in H is higher than the corresponding/paired case
in P. If H i= pgreater than P, case-by-case, then the conclusion that H has a higher mean than P is
warranted, and yet the boxplots will simply not show that.

Example 3: Exercise 8.38

Elevated energy consumption during exercise continues after the workout ends. Because calories

burned after exercise contribute to weight loss and have other consequences, it is important to un-
derstand this process. The paper “Effect of Weight Training Exercise and Treadmill Exercise on
Post-Exercise Oxygen Consumption” (Medicine and Science in Sports and Exercize, 1008: 518777522)
reported the accompanying data from a study in which oxygen consumption (liters) was measured
continuously for 30 minutes for each of 15 subjects both after a welght traning exercise and after a
treadmill exercise. Carry out a formal test to decide whether there is compelling evidence for con-
cluding that true average consumption after welght training exceeds that for the treadmill exercise by
more than 5. Does the validity of your test procedure rest on any assumptions, and if so, how would
you check the plausibility of what you have assumed?

First, ask yourself if the data are paired. In this problem the answer 18 Yes, based simply on the
statement of the problem regarding how the data were collected.

weight <- c(i4.6, 14.4, 19.5, 24.3, 16.3, 22.1, 23, 18.7, 19, 17, 19.1, 19.6,
23,2, 18.5, 15.9)

tread <- c(11.3, 5.3, 9.1, 15.2, 10.1, 19.6, 20.8, 10.3, 10.3, 2.6, 16.6, 22.4,
23.6, 12.6, 4.4)

t-ox:piot{ueigh‘t, tread, names = c{"weight", "treadmill™})

x
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# can be completely wrong for paired data. But 4t is useful to look at for unpaired
# data.

# The scatterplot of the two variables shows a correlaiion
plot(weight, tread)
cor (weight, tread)

[1] 0.7419

# Now, the t.test assumes that the population is normal. 5o, left's sae
# if our data are ot leasi comsistent with that assumpiion:
gqnorm(weight)

qqnorm(tread)

# These could look beiter! Buit with the small sample size we're dealing with,
# they are normal enough. Also, technically, since we need to do @ paired test,
# it i5 the differences thai should have a mormal disiribution.

qgnorm(weight - tread)

iy
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weight
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Now, suppose the problem had asked if the data suggest that the mean consumption associated
with weight training is higher than that associated with treadmill exercise. The hypotheses would be;

-HI:I: Hweight — Hiread i: 1]
-Hl: Fweight — Hiread =0

The appropriate CI or test would be the two-sample, 1-sided, t-test. But, which side - the lower or
the upper confidence hound?

t.test(weight, tread, paired = T, alternative = "greater")

Paired t-tast

data: weight and tread
t=4.8, df = 14, p-valus = 0.0001



alternative hypothesie: true difference in means ie greater than 0
95 percent confidence interwval:
3.802 Inf
gample estimates:
mean of the differences
6.067

This particular arrangement of arguments in t.test(), and “alternative = greater” produce the
lower confidence bound for po.eight — feread. Here, it's about 3.9, and it’s greater than 0. So, we would
gay that we are 5% confident that the true difference between the means is greater than 3.0. So,
there is evidence (from the data) that pry.ighs is greater than pyead.

Also, note that the p-value is small (below any of the common o values). So, the conclusion
would be “Yes, the data do provide sufficient evidence to reject Hj in favor of the alternative |that

Buweight = Hiread :I 4

Now, returning to the exact statement of the problem, it asks if there iz sufficient evidence that
the difference exceeds 5 (not zero). The appropriate hypotheses are:

Hy: Houweight — Hiread <5
-Hl: Fuweight — Hiread - b

This is how you do the t.test():

t.test(weight, tread, mu = 5, paired = T, alternative = "greater")

Paired t-test

data: weight and tread
t =0.87, df = 14, p-value = 0.2
alternative hypothesie: true difference in means i1& greater tham &
95 percent confidence interwval:
3.802 Inf
gample estimates:
mean of the differences
6.067

The lower confidence bound i= still about 3.0 . But the conclusion iz now different. Becausze 3.0 iz
lower than 5 (i.e., 5 is ingide the “interval” ), we CANNOT say anything! The most we can say is that
there is insufficient evidence to conclude that the true average consumption after weight training
exceeds that for the treadmill exercise by more than 5.

The p-value approach leads to the same conclusion:

The p-value for this test is different from that of the previous part. Now, the p-value is large
(larger than any common value of o). As a result, the data do NOT provide sufficient evidence to
reject Hp in favor of Hy (that fuyeight — Miread > 5).
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t_obe <- (mean(weight - tread) - 5) / (sd(weight - tread) / sqrt(15))
t_obe # Note that this agrees with i_observed given in t.fest()

[1] 0.8681
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pt(t_obe, lower.tail = F, df = 1B=1

[1] 0.2
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6.3 Power of A Test

Recall that the power of a test 18 defined as power = 1 — 3 where J is the probability of maling a
type II error. The main reason why we care about power is that just concentrating on o {which 18
what most people do) has some serious and adverse consequences in decision making.

n <~ 100 # Sample siza.
pop.ed <= 1 # Population siandord deviatiion.
mul} €= 0 # tha null paramater.

alpha <- 0.05
a <- gnorm(1l - alpha, m0, pop.ed / sqrt(n)) # Value of z_bar with righi-area = 0.05
a # Note this is not 1.64, but 1.64/(sigma/root(nl).

[1] 0.1845

mu <- seq(-0.5, 0.5, 0.01} # Differeni values of mu.

power <- pnormia, mi, pop.sd / sqrt{n), lower.tail = F)

# Note that we are doing o one-sided test because Hi1: mu > mud.
plot{m, power, typs = "1")

abline(v =9, col = 2)

ablinath = O, col = 2}

power

00 04 08

-04 00 04

mu

Recall what o = 0.05 means: If we use the above procedure for testing Hy ve. H; many many
times, about §% of the time we will commit a type I error. In other words, we will reject Hy when
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it is in fact true. In this problem, we will say p is not zero, when it really is zero. But what fraction
of the time will we reject Hy when it iz in fact False? That's power. So, in this case if g is 0.4, then
nearly 99%, of the time we will correctly reject p = 0.

6.4 Distribution of p-values

Have you wondered what the distribution of p-values (=ay, from a 2-sided, 2-sample t-test ) is under the
null hypothesia (of equal means)? The following simulation shows that the p-values have a uniform
digtribution.

mi.1l <=0
mu.2 <= 0 i population 2
n.triale <- 1000 # Number of samples to tak

p <- numeric(m.trials) # Space

for(i in 1l:n.trials) {
xl <- roorm(100Q, mu.l, 1} # Sample of size 100 from populatior
xz2 <- rnorm(100, mu.2, 1)
pli]l <- t.test(zl, z2)§p.valus

}

histl{p, braake = 20, xlim = c{0, 1))

range (p) 1t some p-value

[1] 0.001452 0.998470

Histogram of p

Frequency

0 20 40 60

This result will seem either obvious or completely mysterious. It's not easv to make it intuitive,
but think of it this way: If the null hypothesis is true, e.g., if there really is no difference between two
population means, then what else can the distribution of p-values be? Any distribution other than
uniform would have some nontrivial location (e.g., mean), or acale (e.g., std dev), which means that
it cannot be a general 'universal answer to the question.
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7 Chi-squared Tests for Proportions (and Independence)
The chi-squared test (chisg.test() in R) can be used in the following 3 situations:
1. Testing whether k& proportions in one population are equal to k specific (NULL) values
2. Teating homogeneity of r populations with respect to & categories

3. Teating whether two categorical variables are independent

7.1 Chi-squared test of k& proportions in 1 population
Example: Tornados and El Nino

The data are az follows:
Number of tornadic days during El Nino years: 14
Number of tornadic days during La Nina years: 28
Number of tornadic days during Normal vears: 44
Total number of days: 86

Number of years classified as El Nino: 12
Number of yvears classified as La Nina: 17
Number of years classified as Normal: 25
Total number of years: 54

We will first assume the following:

1. The proportion of tornadoes occurring in El MNino vears is equal to the proportion of El Nino
VEars.

2. The proportion of tornadoes occurring in La Nina vears 18 equal to the proportion of La Nina
VEears.

3. The proportion of tornadoes occurring in Normal vears is equal to the proportion of Normal
Vears.

If the above conditions are NOT supported by data, then we can say that “Data suggests that climate
has an effect on tornadic activitv.,” To answer the question, we set up the following hypothesis:

12 17 a6
HD: P1=54-.F2=54:P3=54

Hy: At least one of the three specifications in Hy is false

obe.counte <- c(14, 28, 44)
p0 <- c(12/54, 17/54, 25/54)
chisq.test(obe.counts, p = p0 )

Chi-equared test for given probabilities

data: obs.counts
I-squared = 1.8, df = 2, p-valus = 0.4
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The exact p-value is 0.3988. At o = (.05, since p-value > o, we camnot reject the null hypothesis
(that climate has no effect on tornadic activity) in favor of the alternative (that it does). In short,
there 1= no evidence that climate effects tornadic activity, at o = 0.05.

chisq.test{obe.counts, p = plli$p.valus
[1] ©0.3988

chisg.test(obe.counts, p = pl)$expected

[1] 19.11 27.07 39.81

chisg.test(obe.counts, p = pO)$reeiduals™2

[1] 1.36693 0.03167 0.43993

In this example, we can see that the biggest residual is from El Nino. Le., the biggest difference
between observed tornadic counts and the expected counts (if there were no effect between tornadoes
and climate) is in El Nino years.

7.2 Testing homogeneity

The chisq.test() function can also be used to test homogeneity of r populations with respect to k
categories In each. What that means is whether the & proportions in population 1 are equal to the k
proportions in population 2. are equal to the k proportions in population 3, etc. A mathematically
equivalent test is whether two categorical variables are independent. In other words, let us consider
the contingency table. The question can be translated to whether the column and the row variable
are iIndependent. In the following example, the two variables are education level and religiosity. The
first one 18 measured by the highest degree earned: Jr. College, College, and Grad School, and the
second one is whether the subject declares him/herself as Fundamentaliat or Moderate. Note that the
first variable has 3 levels, and the second variable has 2 levels. That's a 2 x 3 (or 3 x 2) contingency
table.

The question we want to answer is the following: Do the data provide evidence that religiosity
and education are independent? (Equivalently, do the data provide evidence that religion is not ho-
mogeneous with respect to education?) To answer the question, we will set up the following hypothesis:

Hy: Religiosity is independent of education. (Religion is homogeneous with respect to education. )
H: Religicsity is dependent on education. {Religion is not homogeneous with respect to education.)

obe.counte = matrix(c(728, 1304, 495, 1072, 2800, 1193), ncol = 3, byrow = T)
chisq.test(obs.counts)

Peareon'e Chi-squared test

data: obs.counts
I-squared = 58, df = 2, p-value = 3e-13
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# The rows are religious belief: Fundamentalist, and Moderais.

Conclusion: Given that p-value < o, we can reject the null hypothesi= in favor of the alternative. Le.,
there is evidence from data that religiosity is dependent on education. (Equivalently, religion is not
homogeneous with respect to education. )
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chisg.test (obe.counts) $expected

1 L2 [,3]
[1,] 599.1 1386 G561.9
[2,] 1200.9 2738 1126.1

chisq.test{obs.counts)$reeiduals"2

11 2 [,3]
[1,] 27.72 2.816 7.954
[2,] 13.83 1.405 3.968

We can see that the bigpest discrepancy between expected and observed is in the first category,
ie., in Jr, College. The next higgest discrepancy is in Graduate school. Inm “English:” There is a
relationship between religiosity and education level, and the relationship i=s strongest in Jr. College
and Graduate school. But what is that relationship? Nothing in chi.sq answers that question. For
that we need to look at the data itself. For example, we can look at the proportion of Moderates
within each of the education levels:

obs.counts[2, ] / apply(cbe.counts, 2, sum)
[1] 0.5986 0.8823 0.7068

Ome can describe the relationship by saying that Moderateness increases with education level.
There may be many different explanations for this pattern (e.g., parental factor, income level, ete.),
but it certainly says that there is a positive relationship between moderateness and education.

7.3 Chi-squared using basic formulas

obs. counts <- matrix(c(435, B8, 89, 375, B0, B4}, ncol = 3, byrow = T)

total <- sum(obs.counts)

rowsum <- apply(obe.counte, 1, sum) # If unfamiliar with apply(?), look-up help. Here,
coleum <- apply(obe.counte, 2, sum) # it simply finds row ond column marginals
expected <- (matrix(rowsum) ¥} t(matrix(colsum})) / total

expacted

,u [,z [,3]
[1,] 432.1 57.61 92.29
[2,] 377.9 50.38 80.71

T I e et S L et ri B S LT Bl e et Pt P Ly g R e 0 +
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residuale <- (obe.counts - expected) / sqrt(expected)
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df <- prod{dim(cbe.counte) - 1} # This df is just the product (mrow-1)#(ncol-1).
I2 <- sum(reeiduale™2) # = observed X-squared.
1-pchisq(X2, df)

[1] 0.8614

# p-value = area under the chi-squared distribution to the right of the b
# observed X-squared.
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8 F-test for 1-way ANOVA

Recall that the main question that can be addressed by 1-way ANOVA iz whether the means of &
samples are equal. Thus, we have the following hypothesis:

Hy: gy =g =ps = - =iy
Hy: At least two of the p’s are different.

Example: Table 9.1 Vibration (in microns) in five groups of electric motors with each
group using a different brand of bearing

Brand 1 Brand 2 Brand 3 Brand 4 PBrand?5
13.1 16.3 13.7 15.7 13.5
15.0 15.7 13.6 13.7 13.4
14.0 17.2 12.4 14.4 13.2
14.4 14.0 13.8 16.0 12.7
14.0 14.4 14.0 13.0 13.4
116 17.2 13.3 14.7 12.3

Mean: 13.68 15.05 13.67 1473 1308
St. dev: 1.104 1.167 816 040 A79
ANOVA Table

Source df a5 MS F

Factor 4 20.88 7.72 8.45

Error 25 22.83 013

Total 20 53.71

Note that the data provided by the following link are entered in a form that makes ANOVA look like
regression: i.e., the 1st column i8 = and the 2nd column is y. Although lm() i= capable of handling
situations where z is discrete/categorical (in which case that r is referred to as a dummy variable),
generally when one speaks of regression it is assumed that r is continmous. Hegardless, in regression
the reponse y is continuous, but in ANOVA it's discrete/categorical.

dat <- read.table("8_1_dat.txt", headsr = TRUE)

aov.1l = aov(Vibration = as.factor{Brand), data = dat)
gunmary {aov.1)

Df Sum 8q Mean 8q F value Pr(>F)
ag.factor (Brand) 4 30.9 7.7l B.44 0.00019 s«
Residuale 26 22.8 0.51

Signif. codem: O 'wes' 0,001 '#&' 0,01 ' 0,06 0. QLD " "D

Since the p-value {00018 < most o's) is really small, we reject the null in favor of the alternative.
Le., the data suggest that at least 2 of the means are different. One way to identify which two means
are different s to at the following boxplots. This plot shows the 5-number summary at each level of
T, 1.e., something about the spread of the data.
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boxplot(Vibration ~ Brand, data = dat)
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This allows for a visual comparison of the distribution of the 5 populations. The p-value sugegests
that at least 2 of the means are different. It's evident, for example, that the population means of
brand 2 and 5 are probably different. But to quantify this observation, we need to do a “post hoc”
analysis, an example of which is Tukev’s.

8.1 Tukey's Test

The following performs Tukey's method (section 9.3 of the textbook) for identifying the different
means. It gives confidence intervals and p-values for pairwise testa of population means. Recall that

if the confidence interval does NOT include zero. then we conclude that the two means being tested
are different.

library(etate)
tuk.1 <- TukeyHSD(aov.l, conf.level = 0.93)
tuk.1

Tukey multiple compariscns of means
99Y family-wize confidence level

Fit: aov(formula = Vibration ~ as.factor(Brand), data = dat)

% as.factor (Brand) "
diff lur upr p adj

2-1 2.26667 0.2535 4.2738 0.0032
J=1 -0.01667 -2.0238 1.8906 1.0000
4-1 1.06000 -0.8571 3.05671 0.3418
5-1 -0.60000 -2.6071 1.4071 0.8113
3-2 -2.28333 -4.2806 -0.2762 0.0029
4-2 -1.21667 -3.2238 0.7906 0.2107
5-2 -2.B6667 -4.8738 -0.85556 0.0002
4-3 1.068667 -0.5406 3.0738 0.3268
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For a 1-way ANOVA test, we will first compute the mean and standard deviation for the data in

Table 9.1, then use the hasic ANOVA equations to show that we get the same answers as above.

8.2 1-Way ANOVA using basic formulas

If only means and standard d

formulas.



dat <- read.table("%9_1 dat.txt", header = TRUE)

attach(dat) # The attach function leads in all variables in the data sei.
k <- 5 # Number of categories.
O <~ m <- B <~ mmeric(k) # Space for meon and sd in each category.
for(i in 1:k) {

n[i] <- € # Sample size in esch calegory.

m[i] <- mean({dat[Brand = i, 2]} # Mean in each category.

g[1] <- sd(dat[Brand == i, 2]} # Stondard deviation in each cafegory.
} # Ignore B warnings, if any.

# To do ANOVA by haond, we need n, m and 5:
i

[l1 66666

m

[1] 13.68 15.95 13.67 14.73 13.08

B

(1] 1.1940 1.1675 0.8165 0.9395 0.4792

# ANOVA using basic anova equations:

df.1 <- k = 1 # Numerator degrees of freedom.

df .2 <- k ® € = k # Denominaior df.

S2B <- sum(n * (m - mean(m)) = 2) # Sum of squares between groups.
S3W <- sum{(n - 1} ® g = 2 ) # Sum of squares within groups.

M3B <- 88B / df.1 # Mean-squared betfween groups.

MSW <- BSW f df.2 # Mean-squared within groups.

FF <- M3B/M3W # F-ratio.

p.value <- 1-pf(FF, df.1, df.2) # p-value.

df.1; 4f.2; S8B; S5&W; MESE; MBW; FF; p.value

[1] 4

[1] 25

[1] 30.88

[1] 22.84

[1] 7.714

[1] 0.9135
[1] B.444

[1] 0.0001871

# Note that resulis are the same as the ANOVA fable above.
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9 T-test and F-test for Regression Coefficients

In multiple regression the F-teat is for testing if at least one of the regression coefficients = nonzero,
because then there s evidence that at least ome of the predictors is useful, i.e., the model has some
utility. Also, if the model has some utility, then we can try to identify which regression coefficients
are the nongero ones, because then the corresponding predictors are the useful ones. The latter step
is done with a sequence of t-tests, each on a different coefficient.

Example: Problem 11.39 (in 2nd edition)

Snowpacks contain a wide spectrum of pollutants which may represent environmental hazards. The
article “Atmospheric PAH Depesition: Deposition Velocities and Washout Ratics” (J. of Environ-
mental Engineering, 2002: 186777195) focused on the deposition of polyaromatic hydrocarbons. The
authors proposed a multiple regression model for relating deposition over a specified time period y to
two rather complicated predictors z; and ry defined in terms of PAH air concentrations for various
species, total time and total amount of precipitation. The data is on the web at:

dat <- read.table("11_39_dat.txt", header = TRUE)

plot{dat, cex = 0.5) # Look ai the dais, ond note the collinearity
medel.l <- Im(y 7 x1 + x2, data = dat) # Fif a linear model
summary (model. 1)

Call:
In(formula = y ~ x1 + x2, data = dat)

Residuale:
Min 10 Median 30 Max
=111.6 =18.F 18.2 27.4 44.9

Coefficients:

Eetimate Std. Error t value Pr(=|t|)
(Intercapt} =33.463810 14, 898258 =2.2b6 0.041 =
xl 0. 002055 0. 000295 6.98 0.0000085 ®&*
x2 29835.665532 13653.728296 2. 18 0.046 =

Signif. codeg: O "#&&' Q,001 's&' 0.01 "#' Q.06 '.' 0.1 ' " 1
Residual standard error: 44.3 on 14 degrees of freedom

Multiple R-squared: 0.5923,Adjusted R-equared: 0.912
F-statistic: 84.4 on 2 and 14 DF, p-valua: 0.0000000165
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Note that the F-ratio tests for “model utility”, 1.e., if at least one variable is a significant predictor
of y. The way it's done in practice is to compare the so-called “full model” (y = infercept + r; + z3).
againat the so-called “null model” (y = intercept). The appropriate statiztic is the F-ratio, which is
returned in summary( ):

summary(model.1)$fatatistic # Returns the F-ratic and degrees of freedom

valus mumdf dendf
84.39 2.00 14.00

pummary(model.l)$fstatistic[1] # Selects only F-r

valua
84.39

The 3 p-values appearing in the table test the full model against a model without one variable.
These are based on the t-tests for testing whether the respective regression coefficient 5 nonzero. In
this case, at o = 0.01, it looks like x1 is the useful predictor and at o = 0.05, both x1 and x2 are
useful. We can also compute a confidence interval for each of the regression coefficients:

confint{modal.1, lewvel = 0.93)

.6 % 89.5 %
{(Intercept) =77.807627 10.880008
xl 0.001178 0.002932
x2 -1080%9.336342 T0480.667406

0.1 Confidence Interval vs. Prediction Interval

Recall that the confidence interval is a confidence interval for the population mean of y given = and the
prediction interval is not a CI at all because 1t I8 not referring to a population parameter. Instead, it
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gives a measure of uncertainty that an individual y will be in some interval. The following commands
produce both CI and PI for all the cases in the data.

predict(model.1l, interval = "confidence", level = 0.95)

fit lur upr
23b.86924 196.4h0 27H.29
162.54267 104.402 220.68
2.63724 -29.043 34.12
0.026bb -31.1668 31.22
b0.09188 23.823 76.36
BB2.93696 49b.5681 670.29
139.26214 112.823 16b.68
J3.8bBBE B.7h2 bB.OT
9.66662 -17.262 36.60
-4.412h4 -32.630 23.81
-10.81166 -38.966 18.33
4]1.06168 b.602 T&.50
-0.19225 -28.001 27.62
£9.47188 23.224 95.72
71.52336 32.917 110.13
127.64824 Th.388 179.91
99.265921 7b.3B8 123.21

OO =] O N e D R

o
= 2

[T el il e T =R =
=] & N = L3 b3

predict(model.l, interval = "prediction", lavel = 0.95)

Warning in predict.lm(model.l, interval = "prediction", level = 0.35): predictions on
current data refer to future responsaes

fit lur upr
1 235.86924 133.036 338.70
2 162.h4267 b1.182 273.850
d 2.63724 -B7.5B3 102.63
4 0.0266b -895.542 100.00
6 50.09188 -48.452 148.64
6 bB2.833696 453.895 711.598
T 139.26214  40.666 237.84
8 33.8bBB6 -64.382 132.10
9 9.66662 -85.0Bb 108.239
10 -4.41254 -103.494 94,67
11 -10.81166 -110.160 #&B8.54
12 41.06168 -60.326 142.43
13 -0.19236 -85.16B 8B.77
14 55.47185 -42.188 161.13
16 71.52336 -31.001 174.0b

16 127.64824 15.242 236.0b
17 $3.29521 1.268 187.24

The output contains the predictions (first column), followed by the lower limit (second column)
and upper limit (3rd column) of the prediction mterval. Note that the PIs are much wider than the
Cl= for each of the cases in the data. Also, you may get a warning that accompanies FI; it’s meant to
remind you that the PI is designed to capture some percentage (e.z. 95%) of “future” y values. These
individuals should not be included in the data set that was used to develop the regression eguation
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(ie., the training set). Otherwise, the coverage of the PI will not be correct (95%). To get the PI for
all the casea In a new data set, called new.dat, use the following command:

predict(model.l, newdata = new.dat, interval = "predicticmn", level = 0.95)
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10 Appendix: Quizzes

10,1 QUIZ 1

Congider the following data from problem 1.2 (Chapter 1, problem 2) in the book:
6.1FRTETIT2026683708378R1748580080714112611.2

a. Write code for entering this data into R using one of the methods described in section 1.

b. Write code for plotting a frequency histogram of this data. What are some appropriate values for
the quantity “breals?™

¢. Does the data appear to be reasonably symmetric?

Solution

oo B 0 P R 0 (R D T S L T T AL R [ I el el
P e T S B R LB L O

hist({x, 5, main = 'Number of breake = &')

hist(x, 10, main = 'Number of breaks = 10')
hist(x, 20, main = 'Number of breaks = 20')
hist(x, 30, main = 'Number of breaks = 30')

Number of breaks = 5 Number of breaks =10
ﬂ e e
[} 1] =
= =5 - =
i oo
= —l_ o - Ej D
[ | | | [ | | [ [ | [ [
4 6 8 12 16 6 8 10 12 14
X X



Number of breaks = 20 Number of breaks = 30

" . S e
gm— "E"‘ _
i) T o
F - ol S8 I
e 100 = o
° " T §_| T T &%
6 8 10 12 14 6 8 10 12 14
X X
c) No.

Moral: Generally, the shape of a histogram does change with the number (and location ) of the breaks.
But, skewness is one attribute of a histogram that generally does not change significantly with the
mumber of breaks.



10.2 QUIZ 2

Write code to

a) Identify the names of the two attributes of the R data called “faithful.”
b) Compute the mean of one of the two attributes,

c) Plot a frequency histogram for that attribute. Set breaks = 50.

d) Provide at least one explanation (in words) of that histogram.

Solution

# a)

names (faithful)

[1] "eruptions" “"waiting"

# b))
mean(faithful$eruptions) # or

[1] 3.488
mean(faithful$waiting)
[1] 70.9

el

hist{faithful$eruptions, breaks = 50, main = 'Eruptions') # or
hist{faithful$waiting, breaks = 50, main = 'Waiting')

# or
hist(faithfull,1], breaks = 50, main = 'Erupticmns')
hist(faithful[,2], breaks = 50, main = 'Waiting')
Eruptions Waiting
o w_
- -
0} B )
| o
5 © 5 ©
= = =
g < 5 g ©
(18 — L
o = = B
1T 17 17T 1T T 11
15 25 35 45
faithful$eruptions faithful$waiting



Eruptions Waiting

n _

g S o

'I:D @

& o

& g B

L L
o -

19 25 35 45
faithfull, 1] faithfull, 2]

d) Here are some examples of explanations:

e The typical/likely duration of the eruptions is about 2 or 4.5 minutes.
# The average duration of an eruption (around 3) is actually not typical.

Similarly for “waiting time”

® The typical/likely waiting time between eruptions is about 50 or 80 minutes.
# The average duration of an eruption (around 3) is actually not typical.

Moral: There is a lot of information in the shape of a histogram, and in some situations the mean of
a quantity 5 not a very relevant summary measure. The slight discrepancy between the two p-values
15 because the variances are not equal in this example anyway.



10.3 QUIZ 3
Write code to

a) Simulate/generate the number of heads in an experiment where 100 fair coins are tossed 1000
times. Assign the 1000 numbers to a variable called v. Hint: this is just one line of code.

b} Plot the histogram of y on a density scale. Hint: one line of code; use the default number of
breaks.

c) Overlay on the histogram a plot of the binomial distribution with n =100, = = 0.5, for r values
ranging from 0 to 100. Hint: use lines().

Solution

4

y <- rbinom(1000, 100, 0.5)
hist{y,freq = F)

T <- c(0:100)
linee(x, dbinom(x, 100, 0.5))

Histogram of y

Density
0.00 004 0.08
|

3B 45 5 65

Moral: Note the agreement between the distribution (according to dbinom()) and the histogram
of the sample taken from it (rbinom(1000,100,0.5). The slight relative shift is because of the way R
places the histogram bins.
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104 QUIZ 4
Write code to

a) Take 200 points from a uniform distribution between -1 and 1, and call it z.

b) Define a new variable, y, equal to =, but with additional normally distributed noise with g =0,
a = 0.5

c) Define a new variable, z, equal to =, but with additional normally distributed noise with p =0,
a = 0.5,

d) Compute the correlation coefficient between = and y, r and z, and y and =z.

Solution

J.C. -.’C— runif (200, -1, 1)

:,: -:— X + rnorm(200, 0, .E)
; -:— X + rnorm(200, 0, .6)
¢ S

cor(x, y)

[1] ©.7447

cor(x; =}

[1] ©.74kE

cor(y, z)

[1] 0.574

Note, in general, correlation does not satisfy the transitive property. Le., if x i correlated with y,
and x is correlated with z, that does not imply that v and = are equally correlated. In fact, it's even
poasible to have r(z,y) > 0, r(r,z) > 0, and r(y,z) < 0.



10.5 QUIZ 5

We have seen how the correlation coefficient can be “deceived,” giving the wrong answer if the scat-
terplot has clusters. Regression has similar problems. Here we will demonstrate something called
Simpson’s paradox, which i demonstrated in the figure shown below.

The figure shows two clusters with 50 points in each. The first cluster iz made from a uniform =
(between 1 and 3), and normally distributed error (g = 0, ¢ = 0.3) about y = —3 + x. The other
cluster is made from a uniform x (between -3 and 1), and normally distributed error (g =0, o = 0.3)
about y =3+ .

Clearly, for each cluster, x and v are related, and so, we can do regression on x and v, leading to the
two positively sloped lines. Now, if we had not looked at the scatterplot to see the two clusters, and
had instead done regression on the whole data, we would get the straight line with negative slope. In
one case the lines have positive slope, while in the other the line has negative slope - hence, the paradosx!

Write code to reproduce the figure, showing
1) the two clusters.
2) and the three regreszion lines.

Note: Don't worry about the axis labels and the colors. Also. the precize location of each dot in
your scatterplot will be different than the one shown in the fipure, but don’t worry about that either.

R Hints:

1) z = ¢(u,v) combines the arrays u and v to make array z.
2) points() overlaye points over plot(); see section 2.9.2 (on ecological correlation), if you don’t re-
member.

Solution

¥ < 50
Bigma <- 0.3

xl <- runif(N, 1, 3)
¥yl <- x1 - 3 + rocrmiN, @, 515;11&:'
lm.1 <- Im(yl -~ x1)} # Regression for the 1st

12 <- runif(¥, -3, 1)
y2 <- x2 + 3 + roorn(F, O, 515311&:'
m.2 <- Im(y2 = x2) essi

I <- c(xl, x2}

¥ <= clyl, y2)
lm.3 <- 1m(y = x)

plet{xl, y1, zlim = c(-4, 4), ylim = c(-4, 4}, xlab = "x", ylab = "y", cex = 0.5}
pointa(x2, y2, col = 2, cex = 0.5)

abline(lm.1)

ablina(lm.2)

abline(lm.3)



Moral: If there exist clusters in a scatterplot, even the direction of a relationship can be reversed!
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10.6 QUIZ 6

Write code for making the empirical sampling distribution {i.e., a histogram) of the sample standard
deviation. Use the non-normal population examined in previous sections, and set the sample size to
500,

Solution

ro{list = 1s(all = TRUE)) # Clear workspace
N <- 100000

get.eead(1)

pop <- rgamma(N, 1, 1)

n.trial <- 10000 # Take 10000 samples of
gampla.size <- BO0 # of size 500 from the population.
galpla.sd <- numerici{n.trial) # Space for storing the 10000 sample sd.

for (i in 1:n.trial) {
gamp <- sampla(pop, eample.eize, replace = T} # Drow a sample (with
# replacement).
sampla.ed[i] <- sd(eamp} # Compute each sample's standard deviation.

1

hist(zampla.sd)

# The moral of this epercise is that

# 1. (ne con make a sampling distribution for any staiistic, even ihe saomple sid dew.
# 2. and that the sampling disiribution of the sample sid dev is again

# normal te very good appromimation, even when ithe population itself is mot.

# Take a look at

qqnorm(sample.sd, cex = 0.5)

# This normality will help us, later, to make inferences about the
# population stondard deviation.
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10.7 QUIZ 7

Edit the bootstrap code (with non-normal population) so that it will compute the CI for the sample
median.

ro(list = 1s(all = TRUE))

gat. geed(1)

N <~ 100000

pop <- rgamma(N, 2, 3)

pop.mean <- mean(pop)

pop.ed <- sd(pop)

pop.median <- median(pop)

c{pop.nean, pop.sd, pop.median)

hist{pop, breaks = 400, main = 'Histogram of Population')

on.trial <- 100
gample.size <- 80
CI <- matrix{nrow = n.trial, ncol = )
for (i in 1:n.trial) {
gample.trial <- zample(pop, sample.siza)
n.boot <- 100
boot .stat <- mmeric(n.boot)
for (j in 1:n.boot) {
boot .sample <- sample(sample.trial, sample.size, replace = T)
boot .stat[j]1 <- mean(boot.sampla)

}

Crli, 1 <- guantila({boot.stat, c{0.06 / 2, {1 - 0.06 / 2)}}

}

count <- 0
for (i in 1:n.trial) {
if (CI[i, 1] <= pop.mean k& CI[i, 2] >= pop.mean)
count <- count + 1

1

count

plot{c(1, 1), CI[1, 1, ylim = c(0.3, 1.2), xlim = c{0, 101), ylab="CI", xlab = '',
tFP'E = ||1||)

for (i in 2:n.trial) {
linea{efi, i}, CIMY, 1}

1

ablina(h = pop.mean, col = "red", lud = 2)

Solution

rm({list = 1s{all = TRUE))

get.sead(1)

N <= 100000

pop <- rgamma(N, 2, 3} # gammo instead of mormal.
pop.mean <- mean{pop)
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pop.ed <- sd(pop)
pop.median <- median(pop)

c{pop.nean,pop.sd, pop.median)
[1] 0.6659 0.4705 0.5590

hist{pop, breaks = 400)

n.trial <- 100

gample.size <- 80
CI <- matrix(0, n.trial, 2)

for (i in 1:n.trial) {
gample.trial <- sample(pop, sample.siza, replace = F)
n.boot <- 100
boot .stat <- mmeric(n.boot)
for (j in 1:n.boot){
boot.sample <- sample(sample.trial, sample.eize, replace = T)
boot.stat[j] <- median(boot.samplae) # MEDIAN

}

CI[i,] <- quantile(boot.stat, c{0.06 f 2, (1 - 0.06 / 2)})

}

count <- 0
for (i in 1:n.trial) {
if (CI[i,1] <= pop.median && CI[i,2] >= pop.median) & MEDIAN
count = count+l

}

count
[1] 81

plot(CI[1, 1, c(1, 1), xlim = c(0.4, 1), ylin = (0, 101), xlab = "CI",
type="1"}
for (i in 2:n.trial)
1ines(CI[i, 1, c{i, i})
abline(v = pop.median, col = "red", lwd = 3) # population MEDIAN

# Again, it's pretiy close to 85. Im other words, the way we are computing

# a CT for a population median gives us CIs that cover the population median
# the egpected number of times. So, in practice, when you have o SINGLE

# sample, and mo population (of course), you con use this bootstrap method

# to build a CI for the population median.
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10.8 QUIZ 8

Using rnorm( ), take 1000 samples of size 500 from a normal distribution with parameters 0 and 1.
For each of the 1000 samples, do a t.test of Hy: g =0 vs. Hy: p # 0, and store the resulting p-value.
Finally, compute the histogram of the 1000 p-values.

R hint:
pv = numeric(1000) makes a vector of size 1000.

Solution

pv <- numeric(1000)
for(i in e(1:1000)){
X <- roorm(&00, 0, 1}
pvli] <- t.test(x, mu = 0, alternative = "two.sided")$p.valus

)

hist(pv)

Histogram of pv

Frequency

0 40 80
|

pv

Moral: MNote that the distribution looks uniform between 0 and 1. In fact, it turns out that the
distribution of p-walnes under Hy i= in fact uniform between 0 and 1. Quite generally it's strange, but
true. E.g. when g = 0, you may get a sample with p-value below even o = 0.01, which means that
vou would reject p = 0. This is a type I error, and o is the probability of that error.
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10.9 QUIZ Y

You've tossed a 6-sided die 60 times, and have recorded the following frequency table for obtaining
each of the 6 numbers on the die.

Face 1 2 3 4 5 @
Frequency 11 & 7 13 12 0
You are interested in whether this data provide sufficient evidence to conclude that the die is not
fair. You would set-up the following hypotheses.

Hy: The die is fair Hy: The die i= not fair
a) Use chisg.teat() and report the p-value.
b} State your conclusion in words (at o = 0.01).
Solution

If Hy is true, then m; = 1/6, mp = 1/6 ... mg = 1/6 under H;, at least one of these values of m; is
incorrect.

obscounte <- c(11, &, 7,13, 12, %)
pi0 <- c(1/6, 1/6, 1/6, 1/6, 1/6, 1/6)
chisq.test(obscounts, p = pil)

Chi-squared test for given probabilities

data: obacounts
I-squared = 2.8, df = 5, p-value = 0.7

# Al

b) Given that this p-value is greater than o, we cannot reject Hy (the die is fair) in favor of H;
(the die is unfair). Said differently, the data do not provide sufficient evidence to reject Hy (the die is
fair) in favor of H; (the die is unfair).

107



10.10 QUIZ 10

Suppose we are trying to see if the processing speed of two computers is the same or not. To decide,
We rin a given program 5 times on computer A, and 4 times on computer B. The following are the
resulting data on the speed:

Computer A: 2.3, 19, 1.9, 2.2, 2.1
Computer B: 1.8, 1.0, 2.4, 1.8

a) Write code to compute a p-value according to the most appropriate method in section 5. Report
the p-value.

b) At & = 0.05, what i the conclusion? (i.e., what can you say about the speed of the two com-
puters)?

c) Write code to compute a p-value according to a 2-sample t-test. Report the p-value.

Solution

¥ a

T oe=ielBIR, LiBs 182l 2t 1818, 2L
r ¢~efl, 1, 1,1, 1,2, 2, 2, 2}

aov.1l <- aov(y ~ as.factor(x))

pummary (aov.1)

Df Sum 8q Mean 8q F value Pr(>F)
ag.factor(x) 1 0.026 0.0245 0.46 0.52
Residuale T 0.376 0.0536

b) Because p-value = 0.52 > o, we cannot say anything about whether the two true average
computer speeds are the same or not.

i ]

t.test(e{2.3, 1.8, 1.9, 2.9, 2.1), c(1.8, 1.8, 2.4, 1.8},
altarnative = "two.sidad")

Welch Two Sample t-test

data: (2.3, 1.9, 1.9, 2.2, 2.1) and (1.8, 1.9, 2.4, 1.8)
t =0.64, df = 4.8, p-value = 0.6
alternative hypothesie: true difference in means ie mot equal to 0
95 percent confidence interwval:

-0.3228 0.5328

gample estimates:
mean of x mean of y

2.080 1.576

Moral: The F-test, for the case of 2 populations is equivalent to a 2-sample, 2-sided t.test (with
equal variance assumption). In other words, the F-test is a multi-population generalization of the
t-teat.

108



10.11 QUIZ 11

Confidence intervals are designed to cover a population parameter some percentage of the time. Pre-
diction intervals are designed to cover the true individual y values some percentage of time. In this
quiz, we want to illustrate that Cls DO NO'T cover the true individual ¥ values the correct percentage
of time. To that end, write code to

a) Make 100 cases of data on (x, ¥), where x is from a uniform distribution between (-1, 1), and
y=2.r+e where e (for error) is from a normal distribution with g =0, o = 0.1.

b) Perform simple linear regression of y on r, and compute the CI for all the cases.

c¢) Count the number of times that the CI covers the true y values

Solution

I <= runif{100, -1, 13
¥ <- 2%x + roorm{100, 0, 0.1)

lm.1 <- Im(y = x)
CI <- predict{lm.1, interval = "confidence", lewel = (.95)

cot <= 0
for (i in 1:100) {
if (CI[i,2] <= y[4] &k CI[i,3] »= y[il}
cot = cnt + 1

}

COT

[1] 25

Moral: Cls do not cover the true y values the correct percentage of time.
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