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ABSTRACT
A methodology is proposed for inferring the topology un-
derlying point cloud data. The approach employs basic el-
ements of Morse Theory, and is capable of producing not
only a point estimate of various topological quantities (e.g.,
genus), but it can also assesses their sampling uncertainty
in a probabilistic fashion. Several examples of point cloud
data in three dimensions are utilized to demonstrate how
the method yields interval estimates for the topology of the
data as a 2-dimensional surface embedded in R3.
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1. INTRODUCTION
There are many sources of high-dimensional data that are
inherently structured but where the structure is difficult to
conceptualize. The motivation to organize, associate, and
connect multi-dimensional data in order to qualitatively un-
derstand its global content has recently led to the develop-
ment of new tools inspired by topological methods of math-
ematics [5, 17, 19, 21, 23]. The applications of topological
data analysis methods include dimensionality reduction [16],
computer vision [21], and shape discovery [1]. In most of
these applications, the data is point cloud data, i.e., the co-
ordinates of points in some space. Such data arise naturally
in LIDAR (Light Detection and Ranging) [12], image re-
construction [13], and in the geosciences [22]. In addition,
point-cloud data in multidimensional Euclidean space can
arise from nonlinear transforms of other kinds of data such
as time series [10].

Consider, for example, a cloud of points in 3-dimensional Eu-
clidean space. The cloud of points may be confined mostly
to the surface of a 2-dimensional sphere; or to the surfaces of
multiple disconnected spheres. The number of such spheres
is an example of a topological quantity, in contrast to the
specific shape of the spheres (e.g. round vs. squashed) which
is a geometrical quantity. Another example of a topological
quantity is the number of handles; a sphere has none, but
the surface of a doughnut has one. A sphere and a dough-
nut are topologically distinct surfaces in that one cannot be
transformed to the other without cutting and gluing opera-
tions. The number of handles, known as genus, is important
because it turns out any 2-dimensional compact surface can
be constructed by gluing handles onto a sphere [15]. Said
differently, the genus is a defining characteristic of the topol-
ogy of a 2-dimensional compact surface. As a final example,
compare the surface of a ball with that of a coffee mug; the
former has genus 0, while the latter has genus 1. This type of
topological information can be useful in correctly identifying
underlying structures in point cloud data.

Whereas the human eye is capable of inferring such struc-
tures, one often requires a method for performing that task
objectively. For instance, the high dimensionality of the
data may not allow visualization in 3 dimensions. Even in
3 dimensions, it may be that the topological structure must
be inferred in a streaming environment, where a human op-
erator cannot visually inspect every situation one at a time.
Finally, there may be situations wherein the existence of an
underlying structure is not unambiguously evident even to a



human expert. In such a situation, an algorithm capable of
assigning probabilities to the various topological structures
can be useful for decision making [14].

Inferring the various disconnected components of any struc-
ture can be done via a class of statistical methods generally
known as cluster analysis [9]. Some cluster analysis meth-
ods are also naturally capable of assigning probabilities to
the different number of components/clusters. However, such
methods are incapable of inferring higher-order topological
structures. For instance, no clustering algorithm can iden-
tify the number of handles (i.e. genus) of a 2-dimensional
surface underlying point cloud data. It is that task which is
addressed in this paper. The method also produces proba-
bilities for the various possible genus values.

Two main methodologies of topological data analysis have
been discussed so far in the literature: One is based on the
idea of persistence, and the other on discretized approaches
to Morse Theory. This paper discusses a new approach to
discrete Morse Theory, illustrated by analyzing simple ex-
amples of point-cloud data in three-dimensional Euclidean
space. The alternative methodology, based on persistence,
utilizes the idea of capturing topological features in data by
analyzing continuous structures which are associated to data
points as a function of a varying scale parameter that mea-
sures, roughly, how coarsely the data points are assumed to
sample an underlying topological manifold.

To briefly illustrate the idea of persistence, assume a given
data set D consisting of a sampling of a smooth submani-
fold M ⊂ Rn of n-dimensional Euclidean space. Evolution
has moulded the human perception system with the ability
to reconstruct geometric information from two-dimensional
projections; but this capability is only useful in dimension
n = 3. For submanifolds embedded in higher-dimensional
Euclidean space Rn (n ≥ 4), global features of the subman-
ifold M ⊂ Rn cannot be read out from visual inspection of
two-dimensional projections. One topological invariant that
is immensely useful in ascertaining the“global configuration”
of the surface M , and therefore the true global nature of the
“model”M of the given data D, is the sequence of homology
groups Hk(M), further described below. As mentioned pre-
viously, some statistical methodologies like clustering can be
viewed as methods for the extraction of homological infor-
mation. Persistence is a general method to extract homology
information from a given data set. The natural question
persistence attempts to answer is: how can one compute
Hk(M) from only the knowledge of the discrete sample of
points D ⊂M? The strategy persistence uses to answer this
question is the following: Fix a distance parameter ε > 0,
and build a simplicial complex Cε by joining a m-simplex
whenever m + 1 data points in D are mutually within dis-
tance ε of each other. In this way, when ε is sufficiently small
(but not too small) and D ⊂M is a sufficiently dense sam-
pling of the submanifold M , the complex Cε is guaranteed to
have the same homotopy type (and thus the same sequence
of homology groups) as M . For a given fixed data set D,
however, if ε is chosen smaller than a threshold value Cε
becomes a discrete set (with uninteresting topology), and,
similarly, if ε is larger than some other threshold value Cε
becomes a single giant simplex whose topology gives no in-
formation about M . The true topology of M is reflected in

the simplex Cε only when ε ranges in an “optimal” interval
between these two thresholds. The idea of persistence is to
inspect the variation in the topology of Cε as ε varies, and
identify the largest interval in which the topology is “persis-
tent” as a function of ε. This persistent topology is then the
statistical estimate of the “true” topology of the data D.

While persistence relies on sophisticated constructions de-
rived from algebraic topology, Morse Theory supplies the
set of tools for an alternative approach to topological data
analysis [4, 6, 7]. The latter provides a framework conducive
to statistical analysis, because a probabilistic estimate of
the topology follows naturally. There exists a large body
of knowledge on the applications of Morse Theory [18]. Al-
though some of these works are quite complex and sophis-
ticated, to the knowledge of the present authors, some of
the simpler applications have not appeared in data analy-
sis circles. In this paper, a few synthetic examples of 3-
dimensional point cloud data are utilized to illustrate these
simple applications of Morse Theory.

Morse Theory, in its simplest form, can be thought of as a
set of topological constraints which must be satisfied by a
surface, if/when some function on the surface is known. For
example, consider a circle (i.e., a 1-dimensional, compact
surface) in 3 dimensions, oriented along the conventional z-
axis. Also, consider the height function on such a circle; it is
a function defined on the circle which produces the height of
every point on the circle from the x-y plain. Such a function
has two critical points, at the bottom and at the top of the
circle, where its derivative is zero. As shown in the next sec-
tion, these critical points of the height function restrict the
topology of the surface over which the function is defined.
More specifically, it is shown here that by computing the
height function and its critical points for point cloud data,
Morse Theory allows one to infer the genus of the underlying
surface. Moreover, resampling [8, 11] is employed to com-
pute the empirical sampling distribution of the genus, which
in turn allows for a probabilistic assessment of topology.

The contributions of this work are twofold. First, it is shown
that Morse Theory can be employed to infer the topology
of the manifold underlying point cloud data. In the ex-
amples, which are point clouds in R3 , the manifolds are
2-dimensional surfaces and their topology is uniquely set by
one integer: the genus. Second, we point out that the genus
(and more generally, all algebraic topological invariants of
the data) must be treated as a random variable when in-
ferred from data. A resampling method is employed to com-
pute the empirical sampling distribution of the genus, which
in turn, conveys its sampling variability. As such, one can
predict the underlying topology in a probabilistic fashion.

2. METHOD
2.1 Generalities
To demonstrate the methodology, four compact surfaces are
considered (Figure 1). These examples are considered as“in-
puts” into a proposed algorithm for identifying their genus.
They are selected to have nontrivial, realistic, topology, but
also sufficiently simple topology to allow for a lucid presen-
tation. The top/right panel in Figure 1 is topologically a
sphere. However, two “dimples” are introduced in order to
generate more critical points for the height function, render-



ing the problem less trivial. The top/left panel shows the
next nontrivial example, namely a torus. These two sur-
faces have genus 0 and 1, respectively. The next example
(lower/left panel) is a genus 1 surface, but with “dimples,”
again for the purpose of having a more complex height func-
tion. The final example (bottom/left) is a 2-torus, i.e., a
genus 2 surface. Recall that the goal is to infer these values
of genus from data.

a) b)

c) d)

Figure 1. The “dimpled sphere” (genus=0) (top/left
panel), a torus (genus=1) (top/right), a “dimpled
torus” (genus=1) (lower/left), and a 2-torus (genus
= 2) (lower/right).

The particular embeddings/shapes of the surfaces shown in
Figure 1 are employed in the remainder of the article. Other
embeddings/orientations lead to different height functions;
alternatively, functions other than the height coordinate can
be used to assess the topology. The discussion section ad-
dresses the effect of changing the embedding for the pur-
pose of obtaining more precise (less variable) estimates of
the genus.

Point cloud data are simulated by adding a zero-mean ran-
dom Gaussian variable to the height function of the four
surfaces. The variance of this variable controls the level of
noise in the data. Naturally, small values generally lead to
accurate and precise estimates of genus. Said differently,
the inferred value of genus is the correct one, and the uncer-
tainty of the estimate is small. Although larger values of the
variance are associated with less precise estimates of genus,
for sufficiently large values the estimates become inaccurate
as well, in the sense that the most likely genus inferred from
data is the wrong genus altogether. An analysis of the sen-
sitivity of the method to noise level is sufficiently complex
to be relegated to a separate article (reported later). The
complexity of that analysis arises because the effect of noise
level is confounded with the relative size of the various loops
around the handles. For example, even with low noise lev-
els, if one of the tori in the 2-torus is much smaller than the
other, then the method is likely to imply that the underly-
ing surface has genus one. For the present work, suffice it to
say that the standard deviation of the noise is fixed at 0.1.
Loosely speaking, given that the radius of the small loop in
the torus example is 4 (grid lengths), a standard deviation
of 0.1 corresponds to a signal to noise ratio of about 40.

As shown in the next section, Morse Theory can place bounds
on the genus of a surface from knowledge of the critical
points of a function defined on the surface. Specifically,
what is required is the number of minima, saddle points,
and maxima. There exist numerous standard methods for
finding critical points of a function, but in this article a rel-
atively simple approach is adopted for the sake of clarity.

2.2 Specifics
Although the height function is a standard function on a
surface [2, 18], the function adopted in this article is the area
of the surface up to some height h, denoted S(h). The area
function is closely related to the height function, but is more
natural when dealing with data. First, the height function
for data is more noisy than the area function, because the
latter is inherently an integral. Second, critical points of
the height function correspond to points in S(h) where the
derivative S′(h) is discontinuous. The more robust nature,
and the presence of “kinks” in the area function make it a
natural choice to use for identifying the critical points in the
height function.

Given that S(h) is computed from data, it is a random vari-
able. In other words, every realization of the Gaussian about
the surface will lead to a different value. In order to assess
the variability of S(h) resampling is employed [8, 11]. Specif-
ically, 100 samples/realizations are drawn and the distribu-
tion of S(h), at prespecified values of h is generated. Each
distribution is summarized with a boxplot and displayed for
all h values as a means of displaying the functional depen-
dence of S(h), as well as its variability, on h.

Note that each sample/realization of data gives rise to a se-
quence of S(h) values at prespecified h values. As such, S(h)
can be considered a stochastic time series. Additionally, it
is a monotonic, non-decreasing time series. This monotonic
nature of the time series makes it difficult to identify its
kinks (i.e., critical points of the height function). A more
useful quantity is the first derivative of S(h) with respect
to h. Second derivatives are also useful, but here only the
time series of the first derivatives, S′(h), is examined. It is
the critical points of the S′(h) time series which are used in
Morse Theory to infer topology. The sampling variability of
S′(h) is again assessed via resampling, and displayed with
boxplots.



Figure 2. a) A vertical cross-section of the dimpled
sphere shown in Figure 1. The blue lines mark the
height of the critical points. b) The dependence of
the area function S(h) on the height h shown along
the y axis. The blue horizontal lines mark the height
of the critical points. c) The first derivative of S(h)
with respect to h, and second derivative in panel d).

Figure 2 shows the above ideas for the specific example of a
dimpled sphere. The top/left panel shows a vertical cross-
section of the surface shown in Figure 1. The remaining
panels show some of the steps of the methodology. Here the
h values vary from the global minimum of the surface to its
global maximum, in increments of 0.5. The data simulated
about this surface are not shown, but boxplots summariz-
ing the distribution of the S(h) are shown in the top/right
panel. Although the boxplots are relatively small, and dif-
ficult to see, their medians are connected by a red line as a
visual aid. Also difficult to see are the “kinks” in the red line
at the critical points, marked by the blue horizontal lines.
The first derivative (left/lower panel) better shows both the
kinks and the sampling variability. It is evident that some
kind of a kink exists at each of the critical points of S′(h)
(again, marked by the blue lines). The kinks can be gener-
ally classified into three types: an increasing step function,
a cusp (i.e., ∧), and a decreasing step function, respectively
corresponding to minima, saddle points, and maxima. The
second derivative of S(h) is also shown (lower/right panel),
only to illustrate that it too carries information useful for
identifying critical points. However, it is not used in the
present work.

The analogous figures for the torus example are shown in
Figure 3. Again, it can be seen that the kinks in the area
function (and its derivatives) occur at the locations of the
critical points of S′(h), and that the shape of the kinks in
the first derivative are of the same type as seen previously,
namely step functions, and cusps. Similar results are found
for the dimpled torus and the 2-torus (not shown).

Figure 3. Same as Figure 2, but for the torus.

2.3 Finding Critical Points
Although there exist standard methods for finding critical
points of a time series, most rely on some sort of time series
modeling. The time series models, in turn, have numerous
parameters which must be determined. Although there exist
criteria (e.g., maximum likelihood) for estimating the best
models, for the sake of clarity, a very simple approach is
adopted here. The approach is based on template match-
ing. Specifically, three templates are selected correspond-
ing to the aforementioned three kinks observed in the series
S′(h), namely 1) an increasing step function for finding local
minima in the time series, 2) a cusp function for finding the
saddle points, and 3) a decreasing step function for identi-
fying local maxima in the series.

By sliding each of the templates across the time series for
S′(h), and computing the residuals, one obtains three addi-
tional time series. The left column in Figure 4 shows these
series for one realization of data about the dimpled sphere.
The vertical lines are at the h values corresponding to the
critical points. Given that these time series are of residu-
als, near-zero values indicate a close agreement between the
template and the time series of S′(h). It can be seen that
the residuals corresponding to the first template (top/left
panel in Figure 4) approach zero only at the location of the
local minima. Similarly, the residuals for the second tem-
plate (middle/left panel) are near zero only at the location
of the saddle points. The final panel shows the residuals for
the last template, and the residuals are near zero only at
the location of the local maxima. To quantify the notion
of “near-zero,” the histogram of the residuals is examined
(right column in Figure 4). Specifically, any residual within
one standard deviation of zero is defined to be “near-zero.”
This 1-standard-deviation value is displayed with the verti-
cal line on the histograms in Figure 4.



Figure 4. Left column: The time series generated
by sliding three template across the time series of
S′(h) and computing a measure of the error/residual
between the time series and each template. Right
column: The histogram of the three template errors.
From top to bottom, the templates are the increas-
ing setp function, the cusp, and the decreasing step
function.

In short, sliding three templates across the time series of
S′(h), and examining near-zero values of the ensuing resid-
uals correctly identifies the locations of the critical points
of S(h). This method for automatically identifying critical
points of the height function for data can be improved upon.
And as mentioned previously, there exist more sophisticated
methods for identifying critical points. However, that is not
the main goal of the present work. The rudimentary method
outlined here is sufficient to demonstrate the main goal of
the work - that Morse Theory can be employed to estimate
the topology underlying data, and to express the statistical
uncertainty in that estimate.

3. MORSE THEORY
The material presented in this subsection is only a small
portion of Morse Theory, and so, has been called Baby Morse
Theory [2, 3].

Given a surface S, the Poincare polynomial is defined as

P (S) =
X
k

bk t
k ,

where −1 ≤ t ≤ 1, is a quantity with no special meaning,
and bk is the kth Betti number. For a 2-dimensional surface,
k = 0, 1, 2. Intuitively, b0 is the number of simply-connected
components of S, b1 is the number of noncontractable loops
on the surface, and b2 is the number of noncontractable sur-
faces. For example, for a 2-sphere, P (S) = 1 + t2, and for a
torus, P (S) = 1 + 2t+ t2. The 2t term reflects the fact that
there are two noncontractable loops on a torus - one around
the “hole” of the doughnut, and another going around the
“handle.” As another example, consider a 2-torus for which

P (S) = 1+4t+t2. It is important to point out that P (S) is a
topological quantity in the sense that any 2-sphere (symmet-
ric, squashed, dimpled, or otherwise) has P (S) = 1+t2. The
same is true of the other examples considered; their Poincare
polynomial is independent of their embedding/shape.

Given a function f defined on a surface, the Morse polyno-
mial is defined as

M(f) =
X
Pi

tni ,

Pi denotes the critical points of f , and ni is the index of f
at the ith critical point. The index is defined to be the num-
ber of non-decreasing directions for f . Unlike the Poincare
polynomial, the Morse function is not a topological quantity.
For example, consider the perfectly round 2-sphere. Then
the height function has 2 critical points, with indices 0 and
2, corresponding to the South and North poles, respectively.
This is so, because at the South pole there are no directions
in which the height function decreases, while there are two
such directions at the North pole. Then, for the height func-
tion on this sphere one has M(f) = 1 + t2. By contrast, a
2-sphere with dimples in it (e.g., top/left panel in Figure 1)
has 6 critical points with indices 0, 1, 2, 0, 1, 2, respectively,
moving up from the bottom of the figure. For this height
function, M(f) = 2 + 2t+ 2t2. As another example, for the
height function on the torus in the top/right panel of Figure
1, one has M(f) = 1 + 2t+ t2.

Central to Morse Theory are the so-called Morse inequali-
ties [2, 18]. They are expressed in two forms - “weak” and
“strong:”

M(f) ≥ P (S) , M(f)− P (S) = (1 + t)Q(t), (1)

where Q(t) is any polynomial in t with non-negative coeffi-
cients.

In the above examples, note that for some functions one
has M(f) = P (S). Such functions are called “perfect.”
Intuitively, such a function tightly “hugs” the surface. As
such, the coefficients in the corresponding Morse function
are equal to the Betti numbers. As a result, knowledge of
a perfect function is tantamount to precise knowledge of
the topology (technically, homology) of the underlying sur-
face. For all non-perfect functions, the Morse inequalities
provide only an upper bound on the Betti numbers, and do
not uniquely identify the topology.

The search for perfect functions is aided by the Lacunary
principle [2]: If the product of all consecutive coefficients in
M(f) is zero, then f is perfect. Another useful corollary of
the strong form of the inequalities follows upon considering
t = −1: X

Pi

(−1)ni =
X
k

bk (−1)k. (2)

This places a constraint on the allowed number of minima,
saddle points, and maxima: nmin−nsaddle+nmax = b0−b1+
b2. And since in this article only surfaces with b0 = b2 = 1
are considered, then b1 = 2−nmin+nsaddle−nmax . Finally,
given that any 2-dimensional surface can be constructed by
gluing tori to a sphere, it follows that b1 must be even (in-
cluding zero). The genus of a compact surface is then found



to be genus = b1/2 . For a sphere, a torus, and a 2-torus
(e.g. in Figure 1), the genus is 0, 1, and 2, respectively.
Intuitively, the genus counts the number of “holes” or “han-
dles” in a compact surface. Inferring the genus is the main
goal of the present work.

4. RESULTS
Armed with a method to find the number of minima, sad-
dle points, and maxima of the height function (section 2.3),
one can then examine the distribution of each. The top/left
panel in Figure 5 shows the boxplots summarizing the three
distributions for the dimpled sphere example. Recall that for
this example, the correct number of minima, saddle points,
and maxima is 2. The median of the three boxplots is pre-
cisely at 2, as well. The 1st and 3rd quartiles of the distribu-
tion (i.e., the bottom and top sides of the boxes) suggest an
uncertainty of about ±1 for each of the numbers. In other
words, the number of minima, saddle points, and maxima
generally varies within 1 of the correct value (i.e., 2).

a) b)

c) d)

1

Figure 5. The boxplot summary of the distribu-
tion of the number of minima, saddle points, and
maxima, and the histogram of the estimated genus.
The 4 panels pertain to the four examples: dimpled
sphere (a), torus (b), dimpled torus (c), 2-torus (d).

However, not all of the values in that range are allowed.
Eq. (4) constraints the three numbers, because the first
Betti number must be even. This constraint reduces the
uncertainty even further. Meanwhile, the main interest is
in the value of the genus, which can be computed from Eq.
(5). The histogram of the genus is shown immediately below
the comparative boxplots in Figure 5. Interpreting this his-
togram probabilistically, it can be seen that the most likely
value of the genus is zero. And, of course, that is the correct
value. Moreover, values of estimated genus as large as 2 are
possible, but less likely.

The remaining panels in Figure 5 show the analogous figures
for the torus (top/right), dimpled torus (bottom/left), and
the 2-torus (bottom/right). The correct number of minima,
saddle points, and maxima for the torus is (1,2,1). The
analogous numbers for the dimpled torus and the 2-torus are

(3,6,3), and (1,4,1), respectively. The comparative boxplots
in Figure 5, are all in agreement with these numbers. It
is worth noting that the width of the boxplots generally
increases with the complexity of the underlying surface.

The distribution of the estimated genus for all four examples
is also consistent with the correct values. The most likely
genus for the torus, dimpled torus, and 2-torus are 1, 1, and
2, respectively - the correct values. As with the number
of critical points, the uncertainty in the estimated genus
increases with the complexity of the surface. Whereas the
genus for the dimpled sphere varies between 0 and 2, the
range for the 2-torus is 0 to 6.

5. SUMMARY AND DISCUSSION
The Morse inequalities are reviewed. It is shown that when
specialized to the case of a 2-dimensional surface embed-
ded in 3 dimensions, they place severe constraints on the
topology of the surface. Three examples are employed to
show that all of the quantities appearing in the Morse in-
equalities can be estimated from point cloud data, thereby
providing a statistical/probabilistic view of the topology of
the surface underlying the data. Empirical sampling dis-
tributions are produced for the various topological entities,
all of which can then lead to traditional confidence intervals
or hypothesis tests of the topological parameter of interest.
Throughout the paper, an attempt is made to avoid complex
mathematics (e.g., algebraic and differential topology, and
homology), with the hope that the utility of Morse Theory
in data analysis may be appreciated by a wider readership.

As mentioned above, the sensitivity of the inferred quanti-
ties to noise level has not been examined here. The main
reason is that the noise level and the physical size of the
structures underlying the point cloud data are confounded.
This complication is not unsurmountable; it simply calls for
a more careful analysis wherein the size of the noise and the
typical features in the data are both varied/controlled.

The typical size of the features in the data also affects the
uncertainty of the inferred topology. The empirical sam-
pling distribution of the genus spreads out when the topo-
logical features are small relative to noise level. Although
not shown here, we have found that this uncertainty de-
pends on the orientation of the surface. This is expected,
because the height function depends on the orientation. So,
it is possible to orient the surface in a way that would allow
for more precise estimation of the critical points. In other
words, it is possible to add another step to the proposed
method, wherein the variance of the distribution of genus is
minimized across different orientations of the point cloud.
Such a rotation can also be used to identify a perfect height
function, in which case the Betti numbers can be computed
precisely, as opposed to being only bounded at the top. This
idea will be examined at a later time.

In the examples considered here the goal is to identify the
genus of a 2-dimensional compact surface underlying 3d point
cloud data. Several generalization are possible. The dimen-
sionality of the embedding space, or of the “surface” (em-
bodying the underlying structure), can both be generalized.
Of course, a single number like genus will no longer suffice
to define the topology uniquely, but the set of Betti numbers



does. In other words, if the manifold of interest underlying
the data has dimension larger than 2, then more parameters
need to be estimated. From a statistical point of view, the
consequence of this increase in the number of parameters is
that more data will be required to estimate the parameters
with precision.

The general formulation of Morse Theory does not require
the underlying manifold to be compact. There are also ex-
tensions of Morse Theory that allow for degenerate critical
points, as well as extensions to manifolds with boundary, and
to Morse functions that take values in more general spaces
than R (e.g., circle-valued Morse Theory where Morse func-
tions are S1-valued) [20]. The application of these more
powerful topological tools to data analysis is a fruitful fron-
tier for exploration.
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