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Abstract

Neural networks with synaptic weights constructed according to the weighted
Hebb rule are studied in the presence of noise (finite temperature), when the
number of stored patterns is finite. Although, for arbitrary weights not all
of the stored patterns are global minima, there exists a temperature range in
which only the stored patterns are minima of the free energy. In particular, a
detailed analysis reveals that in the presence of a single extra pattern stored
with an appropriate weight in the synaptic rule, the temperature at which the
spurious minima of the free energy are eliminated is significantly lower than
for a similar network without this extra pattern. The convergence time of the
network, together with the overlaps of the equilibria of the network with the
stored patterns, can thereby be improved considerably.



1 Introduction

The statistical mechanics of large neural networks with the Hebb rule prescription
for the synaptic weights has been studied in detail and is now well-understood[1,2].
In this paper, we shall study the statistical mechanics of neural nets with synaptic
weights which are constructed according to the weighted Hebb rule. For orthogonal
patterns, the Hebb rule indeed stores the required patterns as fixed points of the
deterministic updating dynamics, as is well known. The role of the weighted Hebb
rule in the storage of non—-orthogonal patterns was examined in ref.[3]. A Spin glass
model for such neural networks was studied by L. Viana in [4], and at zero temperature
the domains of attraction of the fixed points in the model were analyzed in [5,6]. All
the above studies were concerned with the case where the number of stored patterns
is finite; in the case where this number tends to infinity, a case of interest in a study of
the effect of overloading on memory deterioration [7], extensive work has been carried
out, as well [8].

Our principal motivation for returning to the weighted Hebb rule, in the case of
a finite number of stored patterns, arises from the expectation that the presence of
different weights for different patterns would affect the configuration of the free energy
surface. There is the possibility that some of the degeneracy of the minima of the free
energy would be lifted; in addition, the range of useful operating temperatures of the
network would be changed. In [4], Viana considered the behaviour of the solutions as
a function of temperature, but she did not derive the temperature range in which the
spurious states are unstable. Furthermore, a large class of stable solutions, a subset
of which was found at 7' = 0 in a study of the domains of attraction [5,6], was initially
not found in the Mean-Field approximation [4].

In this article we re-examine the Mean-Field approximation of the model based
on the weighted Hebb rule. We find solutions that were missed in earlier analyses,
and shall find that in fact, the critical operating temperature of the network can be
suitably lowered by a judicious choice of weights. The time needed for the network to
converge to useful equilibrium states can be thereby reduced, since lower noise levels
mean faster convergence times. Additionally, at lower temperatures, the overlaps
of the network equilibria with the stored memories are larger; the overall quality of
memory recall of the network can thus be significantly enhanced.

In the next section, we present the evaluation of the free energy along the lines
of [1,4]. The stationary-point conditions yield the mean field equations (MFE’s) for
equilibrium states in the large—N limit. In section 3, we derive the stability conditions
of the solutions to the mean field equations. In section 4, various critical temperatures



for the existence of stable equilibria are calculated. In the last section we summarise
our conclusions and contrast them with those of [4] and [5].

2 The weighted Hebb rule

We start with a network of N neurons with states s;(t) = +1 at time ¢. At time ¢+1,
the probability of s; flipping sign is

Wi(s; = —s;)) =(1+ exp(Q,BSihi))_l,
where

N
hi =Y Jijs;(t)
j=1

is the local field or potential at neuron ¢ due to all the other neurons, and 3 is an
inverse noise parameter(equivalently 7= 1/f is a ‘temperature’ parameter).

Since J;; is symmetric, an energy function
1
H=—3> Jysis;
i£]

can be attached to every configuration [s]. At zero temperature (3 — 00), the network
converges to a local minimum of this energy function.

Given a set of p patterns(finite in number) of, u =1, .., p, to be stored, we could
try to store these patterns by constructing the synaptic weights J;; in the form

1 v
JZj = N Z guUO',LHO'j
wv

where the numbers g, are positive. Without the g,, factor this would be nothing
but the usual Hebb rule. However, with the g,,, if we require the patterns o to be
stored as fixed points in the § — oo limit, the statistically significant contributions
come only from the g,, terms in J;;. We shall therefore retain only these diagonal
terms g,, = g, in the synaptic rule, yielding the weighted Hebb rule:

1
Jij = N > guotal.
m



At finite temperatures 7', one needs to look for minima of the free energy to iden-
tify metastable states of the network. Accordingly, we need to evaluate the partition

function
7 = Tre PH.

Proceeding as in ref.[1], and assuming that the stored patterns are random, we define
overlap variables m, =< o# < s >>. In the N — oo limit, the free energy per
neuron f = F/N and the stationary point equations we get in the evaluation of Z
then take the form

121 1
F(B) =35> —m — = < log(2 coshfm.d) >, (1)
2 17 gu /6
and
my = g, < o¥tanhpm.c >, (2)
respectively!.

We shall first look for solutions to the stationary point or mean field equations
at zero temperature.

T=0:

In this limit, the tanh function becomes a sign function, and log(2coshy) — |y|
as |y| — oo.

If 7 has only one non—zero component (the Mattis states), for instance m =
(m,0...0), then m = gy, (up to an irrelevant sign), and f = —(1/2)g;. From this we
can see that the lowest-energy state, and hence a stable state, is

m = +gmaz(1,0...0),

with g4, being the largest component of §. The stability of these states can also
be seen from the MFE and the free energy directly: we have f = —(1/2) ¥(1/g,)m?,
and ¥(1/9,)m2 < gmag (this follows from <|m- o [>< [¥(m#)?]'/?), implying that
these Mattis states occupy global minima.

We note, however, that the other Mattis states, corresponding to ¢ < Ggmaz,
are not global minima. Nevertheless, they are certainly local minima (and hence
metastable states) at zero temperature, and they exist as stable states for sufficiently
low temperatures as well, as we shall see.

1Qur mean-field equation differs from that of ref. [4] only in convention; the order-parameter in
the latter, written as g#, is related to ours as g* = mH /g".
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For symmetric states with n non-zero components of the type m = m,(1...1,0...0),
the MFE’s imply that one must require,

in which case we get

my, = i% | zp >
and 1
fo=—2dm2 = — L «| 2 >
2n 2n

n

where z, = -1

o*. We shall call such states symmetric states corresponding to g.

These equations differ from those obtained in [1] only in the factor of g appearing
on the right-hand side, resulting in the same ordering of the f,,’s as that of [1].

We can also consider general states of the form 7 = (mq, mo, m3, ..., my, 0, ..., 0),
with distinct, nonzero m’s. As can be seen from (2), the case of n = 2 is trivial, in
that there are no nontrivial solutions with m; # msy. To reduce technical complexity
we restrict ourselves to the case of n = 3. As we shall see, since there are no non-
trivial solutions with n = 2, this will be sufficient to establish a definitive conclusion.
It is easy to see that the 7" = 0 limit of these states is m = (1/2)(g1, 92, 93,0, ..., 0), for
all? positive g,. The stability of these solutions will be discussed in the next section.

T #0:

We shall assume that the states we wish to look at start appearing just below
a temperature 7' (which depends on the state); correspondingly, the overlaps m are
small near this temperature, and we can expand the cosh and tanh functions in a
series in m, keeping only the first few terms. Then our equations become (to the
appropriate order)

my, = gufm,(1+ %ﬁQmZ — 32m?) (3)

2This can be seen as follows: The T = 0 limit of equation (2) is the same, but with the tanh
replaced by the sign-function. Performing the quenched average leads to 3 equations - for 4 = 1,2, 3.
Then, one is faced with 4 separate cases to consider; m; < ms < ms3, ms > my and mo > ms,
me < my and mo < mg3, and my > mg > mg3, respectively. An exhaustive inspection, then, leads
to the conclusion that (1/2)(g1,92,9s,0,...,0) is a solution if one has g1 + g» > g3 for the first,
g1 + g3 > go for the second, g1 + g2 > g3 and g + g3 > g1 for the third, and g» + g3 > g1 for the
fourth case. This last condition alone is the one that was considered in [4]. However, we can see that
all possible conditions on the 3 ¢’s have appeared, and yet they correspond to the same solution,
ie. (1/2)(91,92,93,0,...,0). Hence, since any g has to satisfy one of these inequalities, this solution
exists for all (positive) g,.



and
=—§:—m -3 — . —T log 2. 4
f(8) g2 g, 218%& mu+12ﬁ < (m.o)* > og (4)

We can see that there exists a critical temperature, above which the only solution
is the trivial one 7m = 0. In particular, the critical temperature for the appearance of
a Mattis state with one non-zero component m* is therefore T# = g,. For all of the
Mattis states to exist as solutions of the stationary point equations, therefore, the
operating temperature of the network must satisfy 7" < g; where g, is the smallest of
the weights g,,.

The symmetric states m = my,(1...1,0,...0), still require that we have § =
(9, -9, Gnt1, -, Gp), With n g’s. We find that for given g, the n = 1 state has the
least free energy among the symmetric states corresponding to that g. In the next
section we will see that these are in fact unstable above a certain critical temperature,
and so we postpone the discussion of stability to that section.

For the general asymmetric states, having restricted our attention to the n =3
case (i.e. m = (my, mg, ms,0,...0)), we shall show that these states are also unstable
at T' = g,. The stability of these states will be discussed at length in the next section.

3 Stability

The positivity of the eigenvalues of the stability matrix 0% f/8m,0m, assures the
stability of the states. From (2) we get

0? 1
f = _5;w - ﬂ(d;w - Q,uu)v

om,0m, g,

where
Q. =< o"o”tanh®Bm.c > .

Zero temperature:

As we discussed in the previous section the Mattis states are stable at T'= 0 for
G = (Gmaz» 92, - Gp), With M = (gmaz, 0, ..., 0) being the global minimum.

For the symmetric states with n non-zero components m = m,(1,1,..,1,0,0,...0),
with § = (g, ..., 9, ga, ---), (Where n of the g’s are equal) and « = n+1, ..., p, we find the
eigenvalues of the stability matrix and find that, as in ref.[1], in the 7" — 0 limit the
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eigenvalues, which depend on ¢, = Q,, and @ = @, (with u # v), are all positive
for the odd n states, while the even n states are all unstable due to the presence of
negative eigenvalues.

In the case n = 3, for instance, and in the limit 7" = 0, we see that ¢, = 1
and @ = 0, giving A\; = 1/g, A§ = 1/g,, and A3 = 1/g, all of which are positive,
yielding stability. This is a point of departure from [4]; there, because of the condition
g1 > go > g3, it was impossible to allow for solutions of this type, and as a result,
these solutions were not found. Although these solutions may not seem significantly
different from the symmetric solutions found by Amit, et al. [1], as we shall see in
the next section, the fact that we have not imposed any conditions on the g, will lead
to a significant conclusion regarding the lowering of the critical temperatures of the
network.

Similarly, for T" = 0 and for asymmetric states, all the p eigenvalues reduce to
their respective 1/g,, again yielding stability. This, too, was not considered in [4].

Finite temperatures:

For the symmetric states, at the temperature T ~ g, we have g, ~ $°m?n, and
Qn = (2¢,/n). Then we can see that

4 1

(T —
3n—292( 9)

A3=$—ﬂ(1—qn)—ﬁQn%—

which is clearly negative for T' < g, except for n = 1 where A = %(g“ —T)>0. The
(n > 1) symmetric states are therefore unstable at T = g.

Let us mention in passing that \; = % - B(1 — ¢g,) + B(n — 1)@, becomes, for

n = 1 states, —i—%, which is positive below the temperature 7" = g. The eigenvalue
A3 is not present for n = 1 states. The sign of A\ depends explicitly on the various
components of ¢, and this shall be discussed further, below. However, that \; is
negative is sufficient to render the symmetric states with n > 1 unstable. The exact
temperatures at which their stability, as well as the stability of the asymmetric states,

is lost will be derived in the next section.

4 Critical Temperatures

The evaluation of critical temperatures requires the solution of the mean field equa-
tions in conjunction with various relations for the eigenvalues.
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First, we deal with the symmetric states. We showed that of the eigenvalues (5)
of the stability matrix, A; is positive in the range "= 0 to T" ~ g, A3 changes sign
from + to —, while the sign of Ay depends on the form of § explicitly (see below).
Hence, there are two possibilities to consider: one is where A3 is set to zero, to find
the critical temperature 7" = T, at which A3 changes sign, while )\, is constrained to
be positive at that temperature T.. The second case is where A, is set to zero to find
the critical temperature T' = T, at which Ay changes sign, while A3 is constrained to
be positive. The former gives

T, o
Bms = 0.94, - =046, for 2<1.32,.
g

g
with the last constraint coming from the requirement Ay > 0 at T =T,.

Our results up to this point do not differ significantly from those of [1]. However,
let us go on further to the second case with n = 1.

Let g; be the smallest of the g’s, and consider the corresponding Mattis state
M = (0,0,..,ms0,..,0). The smallest of the eigenvalues in this case is A\§ with

9o = Gmazx,

1
)‘g: _B(l_Qf)a

gmaz

where ¢4, is the largest of the ¢’s, and ¢ is the corresponding value of q. Now to
avoid spurious n = 3 states corresponding to gq; (Which exist whenever g,,q, occurs
at least three times in the set of ¢’s), the operating temperature of the network must
be greater than 7, = 0.46¢,,4., as we have seen. At this temperature, in order for
M to exist as a stable state, Ay must be positive, or at best zero. This yields the
constraint gs/gmae > 0.589 on the value that the smallest g can take, if all the given
patterns are to be stored as stable Mattis states of the network.

Turning now to the case of the n = 3 symmetric states corresponding to g, and
for go/g > 1.32, where g, occurs only once or two times among the g’s, we see that

Yo

T g ,
“e =9 g, with %2 >1.32
g

9 g

some of whose solutions can be tabulated as follows:

9a/g | 1.32 | 1.34 | 1.42 | 1.66 | 2.0 3.0
T*/g | 0.46 | 0.45 | 0.43 | 0.38 | 0.34 | 0.29

We can now see that, whereas for g, < 1.32¢, the critical temperature is simply
0.46¢g, for g, > 1.32g, the critical temperatures are all lower than the former. If



go is the largest g which occurs at least three times, the operating temperature of
the network must be at least 0.46gy if the largest g bigger than gg, gz, satisfies
Imaz < 1.32g9. This minimum necessary temperature for the avoidance of spurious
equilibria is lowered when g,,., > 1.32go. In other words, by adding additional
patterns with sufficiently large weights, we can lower the temperature above which
there are no spurious states, leading to a “better” network. What is meant by “better”
will be discussed in the next section.

The symmetric states with n > 3 can be shown to have even lower critical
temperatures, exactly as in [1]. Therefore, it is sufficient to consider the n = 3 states
only.

We now proceed to the case of the asymmetric states m = (mq, mg, ms,0,...,0)
with a general weight vector, i.e. § = (91, 92,93, 9o)- The MFE’s can be written in
terms of # = B(my -+ — ms), y = By — ma +ms), 2 = B(—my +my +my), and
the secular equation, dictating stability, can be written as

Nt Lo 2 1T L —sa—g =N =0
T ’ T? ' 13 ’ a=n+1 J& ! a
where Iy, Iy, [y are all functions of z, y, z,92/91 ,93/91 and T/g;. Here ¢ is defined
as

1
qg= Z[tanh2(x +y + 2) + tanh® z + tanh® y + tanh® 2].

Since we are generally interested in the temperature 7, at which a given eigen-
value becomes zero (i.e. changes sign from + to —), there are two separate cases
we can consider: one is where \(®) = gia — B(1 — q) is set to zero, while the other
3 eigenvalues (from the cubic part) are constrained to be nonnegative. The second
choice is to set one of the 3 eigenvalues from the cubic part equal to zero and demand
for A(®) and the remaining 2 eigenvalues to be non-negative.

The former case gives
(12 /9) = H(1=0) (5)
and the positivity of the other eigenvalues can be insured by the constraints
Iy <0, [{ >0, and Iy < 0.
The first of these constraints, in conjunction with (5), simplifies to

Ja 1 1\
g1 >3 (1 - (92/91) * (93/91))
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The last two constraints must be imposed numerically in finding 7,.. Some results are
shown in the table below for the case when g, = g3. These spurious states are stable
for go > g3 and T < T7.

g2/g1 0.6 [08 [0.95] 1.0
g™ g [2.0 | 1.89 | 1.6 | 1.32
T/g. 018027037046

In the second case, since we are interested only in the zero eigenvalues, it is
sufficient to set [ = 0, and solve this equation numerically along with the MFE’s.
For the remaining eigenvalues to be nonnegative we must require

(T/ 1)

l, <0, I, >0, and 92 < 219V
g1 1—-g¢q

Some results of this calculation are shown in the table below for g3 = g¢o.

g/g1 | 1.1 |12 |13 |14 1.5
T./g1 | 0.29 | 0.22 | 0.19 | 0.15 | 0.11

Again, these spurious states are stable for T' < T..

We note that for g of the form (g1, g2, g3, ...), with g1 = go = 1 and g3 = 1.32, the
critical temperature of the associated spurious state (mq, ms, ms, 0..,0) with m; = my
is close to 0.19. If g; occurs at least three times in g, the critical temperature of the
n = 3 symmetric state corresponding to g; is 0.46. We can in fact make the general
statement that if g,,., is the largest component of ¢, and gy the second largest, for
Gmaz/90 > 1.32, the critical temperature above which there are no spurious states is
determined by demanding the instability of spurious states with non-zero entries m;
of m corresponding to g; < go.

We can present our results in the following format that clarifies the behaviour
of T, /g for various values of g»/¢g1 and g3/g:

B\% 1 0.8]0.9|1.0]1.1]1.2
0.8 | .12 27 15
0.9 25| .33 | .23
1.0 | .27].33 .46 | 29 | .22
1.1 23] .29 .37
12 |15 22 35
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The apparent symmetry of this table is simply due to the symmetry of the MFE’s
and the secular equation under the simultaneous exchange of 2 <+ 3 and z <> y. It is
now evident that all the critical temperatures we have obtained for the asymmetric
states are smaller than 0.46g, (where gy is the largest g that occurs at least three
times), as one moves away from the Hebbian case at the center of the table.

5 Conclusion

Our investigation of the use of the weighted Hebb rule in Hopfield networks has
revealed that the structure of the minima of the free energy at finite temperatures
can be quite distinct from the case of the usual Hebb rule. In particular, by choosing
the weighting factors for the various patterns appropriately, spurious states can be
destabilised at a significantly lower temperature compared to that for the usual Hebb
rule. When the operating temperature of the network is larger than the largest among
the critical temperatures for the various spurious states, we have a network where only
the Mattis states (corresponding to the stored patterns) are equilibria of the network.

Specifically, we can make the following rather general statements.

(1) If the largest of the ¢’s, gmaz, Occurs at least three times or more, then the
temperature range in which no spurious states exist is 0.46gm0e < 1T < Gmaz- If the
largest g which occurs at least three times is go, and the largest ¢, gmaz, OCcurs no
more than two times and satisfies g4, > 1.3299, then the critical temperature above
which no stable spurious states exist is smaller than 0.46g,, and can be calculated as
we have shown.

(2) If the smallest of the ¢’s iS gmin, and the largest one, gmaz, occurs at least
three times, and the constraint g/ gmaez > 0.589, is satisfied, all of the patterns to
be stored exist as stable Mattis states in the range of temperatures where spurious
states are excluded. If g,,4, occurs only once or twice, this constraint on the ratio of
min 1O gmaz 18 changed and can be calculated in a manner analogous to that shown
in section 4.

In contrast to the results of ref.[4], we note that we have found stable spuri-
ous asymmetric states to exist at finite temperatures. Asymmetric solutions to the
MFE’s were also analyzed in [5] at zero temperature; an exhaustive finite temperature
analysis of the mean field equations of the weighted Hebb rule Hopfield associative
memory has, however, hitherto not appeared in the literature [9]. With the aim of
improving the network performance, we have performed a detailed analysis of the
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stability conditions at finite temperatures, for completely arbitrary ‘weights’ g,. Our
analysis has yielded various constraints that the ‘weights’ g corresponding to the dif-
ferent stored patterns must satisfy in order to completely avoid spurious attractors,
and the corresponding range of useful operating temperatures.

One consequence of the lowering of the useful operating temperature is that con-
vergence of the network to metastable states would be faster. A second consequence
is that the overlaps of the equilibria of the network with the stored patterns would
be larger due to the reduced temperature. Given a set of patterns to be stored, one
could then simply put in an extra pattern weighted by a sufficiently larger weight ¢
as compared to the ¢’s of the other patterns to construct the synapses. The result-
ing network would then converge to an equilibrium state closer to one of the stored
patterns and at a faster rate than a network constructed without this extra pattern
being taken into account. Domains of attraction at zero temperature were estimated
for the weighted Hebb rule network in [6]. It would be interesting to carry out de-
tailed simulations of networks employing the weighted Hebb rule and to determine
the relative sizes of the basins of attraction for the different stored patterns at finite
temperatures as well.
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