Radiative Transfer and Acceleration in Magnetocentrifugal Winds

John Everett

Canadian Institute for Theoretical Astrophysics

University of Toronto

Thanks to my collaborators:

D. Ballantyne, A. Königl, N. Murray

Introduction

Radiative Acceleration Models

MHD Winds Allow Radiative Acceleration

Evidence for

Magnetocentrifugal Winds

Conclusions

Introduction

Introduction & Conclusions

Introduction

Radiative Acceleration Models

MHD Winds Allow Radiative Acceleration

Evidence for Magnetocentrifugal Winds

Conclusions

Outline/Conclusions

- Radiative acceleration can happen under certain circumstances, but is not always dominant.
- Magnetocentrifugal winds can launch the wind from the disk, and then allow efficient radiative acceleration.
- Evidence is mounting in observations and models that magnetocentrifugal acceleration is important in AGN.

Introduction

Radiative Acceleration Models

- Radiative Acceleration Does Happen
- Radiative Acceleration is Not Easy: Theory
- Radiatively-driven Winds Need Shielding
- Radiative Acceleration is Not Easy: Obs.
- Radiative Driving Doesn't Work for PG 1211

MHD Winds Allow Radiative Acceleration

Evidence for Magnetocentrifugal Winds

Conclusions

Radiative Acceleration Models

Radiative Acceleration Does Happen

Introduction

Radiative Acceleration Models

- Radiative Acceleration Does Happen
- Radiative Acceleration is Not Easy: Theory
- Radiatively-driven Winds
 Need Shielding
- Radiative Acceleration is Not Easy: Obs.
- Radiative Driving Doesn't Work for PG 1211

MHD Winds Allow Radiative Acceleration

Evidence for

Magnetocentrifugal Winds

Conclusions

${\sim}15\%$ of Quasars show high velocity absorption (Reichard et al. 2003)

de Kool et al. (2001)

Radiative Acceleration is Not Easy: Theory

Introduction

- Radiative Acceleration Models
- Radiative Acceleration Does Happen
- Radiative Acceleration is Not Easy: Theory
- Radiatively-driven Winds
 Need Shielding
- Radiative Acceleration is Not Easy: Obs.
- Radiative Driving Doesn't Work for PG 1211

MHD Winds Allow Radiative Acceleration

Evidence for Magnetocentrifugal Winds

Conclusions

Radiative acceleration is not easy to compute, theoretically.

One needs to consider:

- Detailed photoionization simulations of the accelerating gas (see also Chelouche & Netzer 2003a,b)
- Intrinsic Spectral Energy Distribution
- Shielding against X-ray ionizing photons

Radiatively-driven Winds Need Shielding

Introduction

- Radiative Acceleration Models
- Radiative Acceleration Does
 Happen
- Radiative Acceleration is Not Easy: Theory
- Radiatively-driven Winds
 Need Shielding
- Radiative Acceleration is Not Easy: Obs.
- Radiative Driving Doesn't Work for PG 1211

MHD Winds Allow Radiative Acceleration

Evidence for Magnetocentrifugal Winds

Conclusions

Nota Bene: The single-peaked line is (itself) evidence of a wind!

Radiative Acceleration is Not Easy: Obs.

Introduction

Radiative Acceleration Models

- Radiative Acceleration Does Happen
- Radiative Acceleration is Not Easy: Theory
- Radiatively-driven Winds Need Shielding
- Radiative Acceleration is Not Easy: Obs.
- Radiative Driving Doesn't Work for PG 1211

MHD Winds Allow Radiative Acceleration

Evidence for Magnetocentrifugal Winds

Conclusions

Radiative acceleration is not easily seen to be dominant, observationally.

- [O III] NLR gas is not radiatively or thermally driven (J.E. & Murray 2006)
- UV Absorption lines are not radiatively or thermally driven, and absorbers seem to show transverse motion (Kraemer et al. 2005)

 Relativistic X-ray winds cannot be radiatively driven (J.E. & Ballantyne 2004)

Radiative Driving Doesn't Work for PG 1211

Introduction

Radiative Acceleration Models

- Radiative Acceleration Does Happen
- Radiative Acceleration is Not Easy: Theory
- Radiatively-driven Winds
 Need Shielding
- Radiative Acceleration is Not Easy: Obs.

Radiative Driving Doesn't
 Work for PG 1211

MHD Winds Allow Radiative Acceleration

Evidence for

Magnetocentrifugal Winds

Conclusions

 $N_{\rm H,0} = 5 \times 10^{23} \rm \ cm^{-2}$ at the base of the wind; $N_{\rm H}$ required to decrease as the wind accelerates and n decreases.

Introduction

Radiative Acceleration Models

MHD Winds Allow Radiative Acceleration

- Intro to Magnetocentrifugal Winds
- Magnetocentrifugal + Line-Driven Winds
- Brief Tour of a Magnetocentrifugal Wind
- MHD Winds Make Line Driving Efficient
- Density is very important
- High Eddington Number Required

Evidence for Magnetocentrifugal Winds

Conclusions

MHD Winds Allow Radiative Acceleration

Intro to Magnetocentrifugal Winds

- Gas is centrifugally flung outwards, like "beads on a wire" (Blandford & Payne 1982).
- Field line must be at < 60° to the disk for centrifugal force to overcome gravity.
- Assumes that large-scale poloidal magnetic field exists.
- "Mass loading" is only parameterized.

Magnetocentrifugal + Line-Driven Winds

Introduction

Radiative Acceleration Models

MHD Winds Allow Radiative Acceleration

 Intro to Magnetocentrifugal Winds

 Magnetocentrifugal + Line-Driven Winds

- Brief Tour of a
- Magnetocentrifugal Wind
 MHD Winds Make Line
- Driving EfficientDensity is very important
- Density is very important
 High Eddington Number
- Required

Evidence for Magnetocentrifugal Winds

Conclusions

Illuminated Magnetocentrifugal winds:Self-Similar Magnetocentrifugal Wind Model

- Wind is launched magnetically, and can be radiatively accelerated if conditions permit.
- $r_0 = 3 \times 10^{16} \text{ cm}$
- $\blacksquare n_0 = 10^7 10^{11} \text{ cm}^{-3}$
- Magnetocentrifugal Shield Column: $N_{\rm H,0} = 10^{21} 10^{24} \ {\rm cm}^{-3}$ $L/L_{\rm Edd} = 10^{-3} 0.1$
- Risaliti & Elvis (2004) spectrum

Brief Tour of a Magnetocentrifugal Wind

Winds still largely collimated: not an equatorial outflow.

Brief Tour of a Magnetocentrifugal Wind

1 1 1 1 1 1 1

100

(b)

Brief Tour of a Magnetocentrifugal Wind

Introduction

Radiative Acceleration Models

MHD Winds Allow Radiative Acceleration

 Intro to Magnetocentrifugal Winds

 Magnetocentrifugal + Line-Driven Winds

Brief Tour of a

Magnetocentrifugal Wind

- MHD Winds Make Line Driving Efficient
- Density is very important
- High Eddington Number Required

Evidence for Magnetocentrifugal Winds

Conclusions

J.E. (2005)

MHD Winds Make Line Driving Efficient

Introduction

 Radiative Acceleration Models

 MHD Winds Allow Radiative

 Acceleration

 Intro to Magnetocentrifugal

 Winds

 Magnetocentrifugal +

 Line-Driven Winds

 Brief Tour of a

 Magnetocentrifugal Wind

 MHD Winds Make Line

 Driving Efficient

 Density is very important

 High Eddington Number

 Required

 Evidence for

Magnetocentrifugal Winds

Conclusions

Adding a greater column (more shielding) in the magnetocentrifugal wind helps make line driving more efficient.

J.E. (2005)

Density is very important

Introduction

Radiative Acceleration Models

MHD Winds Allow Radiative Acceleration

- Intro to Magnetocentrifugal Winds
- Magnetocentrifugal + Line-Driven Winds
- Brief Tour of a Magnetocentrifugal Wind
- MHD Winds Make Line
 Driving Efficient
- Density is very important
- High Eddington Number Required

Evidence for Magnetocentrifugal Winds

Conclusions

The wind models are very dependent on the initial density, though, which sets the ionization state at the base of the wind.

High Eddington Number Required

Introduction

Radiative Acceleration Models

MHD Winds Allow Radiative

Acceleration

 Intro to Magnetocentrifugal Winds

 Magnetocentrifugal + Line-Driven Winds

 Brief Tour of a Magnetocentrifugal Wind

 MHD Winds Make Line Driving Efficient

Density is very important

 High Eddington Number Required

Evidence for Magnetocentrifugal Winds

Introduction

Radiative Acceleration Models

MHD Winds Allow Radiative Acceleration

Evidence for

Magnetocentrifugal Winds

- MHD Winds Explain
 Unification Model
- MHD Wind Models of BALQSOs

Conclusions

Evidence for Magnetocentrifugal Winds

MHD Winds Explain Unification Model

Friday, December 2nd, 2005

MHD Winds Explain Unification Model

MHD Winds Allow Radiative Acceleration

Evidence for

Magnetocentrifugal Winds

• MHD Winds Explain

Unification Model

 MHD Wind Models of BALQSOs

Conclusions

Königl & Kartje (1994) The increased extinction near the disk in a dusty wind may explain AGN Unification. The Sy 1/Sy 2 dichotomy is due to a dusty disk wind.

MHD Winds Explain Unification Model

Barger et al. 2005, Ballantyne, J.E., & Murray (2006) Dusty MHD winds also give a natural explanation to variation in Broad Line Fraction as a function of luminosity.

MHD Wind Models of BALQSOs

MHD Winds Allow Radiative Acceleration

Evidence for

Magnetocentrifugal Winds

• MHD Winds Explain

Unification Model

 MHD Wind Models of BALQSOs

Conclusions

de Kool et al. (2001):
Low Ionization Lines of MG II, MG I, FE II, FE I
Outflow velocities of ~ 200 km s⁻¹ to 6000 km s⁻¹

MHD Wind Fits to FBQS 1044

Introduction

Radiative Acceleration Models

MHD Winds Allow Radiative Acceleration

Evidence for

- Magnetocentrifugal Winds
- MHD Winds Explain
- Unification Model
- MHD Wind Models of BALQSOs

Conclusions

J.E., Königl, Arav (2002):

What if the outflow is shielded, as in our magnetocentrifugal model?

Using a shielded, multiphase magnetocentrifugal wind model, we found:

- $r_{\rm absorber} \approx 4 \ \rm pc$
- $n_{\rm H,0} \approx 10^{8.75} {\rm ~cm^{-3}}$
- $n_{\rm H,cloud,obs} \approx 10^{8.5} \, {\rm cm}^{-3}$
- FE II, FE I, MG I, MG II/MG I, A₂₅₀₀ all in agreement with observations.
- This model, however, requires a large shielding column to absorb ionizing X-ray photons!

MHD Wind Fits to FBQS 1044

Introduction

Radiative Acceleration Models

MHD Winds Allow Radiative Acceleration

Evidence for

- Magnetocentrifugal Winds
- MHD Winds Explain
- Unification Model
- MHD Wind Models of BALQSOs

Conclusions

J.E., Königl, Arav (2002):

What if the outflow is shielded, as in our magnetocentrifugal model?

Using a shielded, multiphase magnetocentrifugal wind model, we found:

- $r_{\rm absorber} \approx 4 \ \rm pc$
- $n_{\rm H,0} \approx 10^{8.75} \, {\rm cm}^{-3}$
- $n_{\rm H,cloud,obs} \approx 10^{8.5} \, {\rm cm}^{-3}$
- FE II, FE I, MG I, MG II/MG I, A₂₅₀₀ all in agreement with observations.
- This model, however, requires a large shielding column to absorb ionizing X-ray photons!
- That shielding column has now been observationally verified: Brotherton et al. (2005) find X-ray absorption by a column with $N_{\rm H} \approx 10^{23} {\rm ~cm^{-2}}$.

Introduction

Radiative Acceleration Models

MHD Winds Allow Radiative Acceleration

Evidence for

Magnetocentrifugal Winds

Conclusions

Conclusions

Introduction

Radiative Acceleration Models

MHD Winds Allow Radiative Acceleration

Evidence for Magnetocentrifugal Winds

Conclusions

- Radiative acceleration can occur under certain circumstances, but is not always dominant.
- Magnetocentrifugal winds can launch the wind from the disk, and then allow efficient radiative acceleration.
- Evidence is mounting in observations and models that MHD mechanisms are important.
 - [O III] gas is not radiatively or thermally driven
 - Relativistic X-ray winds in PG 1211 cannot be radiatively driven
 - UV Absorption lines in NGC 4151 are not radiatively driven (Kraemer et al. 2005)
 - AGN obscuration and outflows explained simultaneously
 - MHD winds can produce observed BALQSO columns and the observed shielding columns in FBQS 1044

MHD Winds in AGN

Introduction

Radiative Acceleration Models

MHD Winds Allow Radiative Acceleration

Evidence for

Magnetocentrifugal Winds

Radiative Driving Doesn't Work for PG 1211

Introduction Radiative Acceleration Models MHD Winds Allow Radiative 0.2 Acceleration Evidence for Magnetocentrifugal Winds Conclusions 0.15 v∞∕c 0.1 Vobs 0.05 0.5

These winds are almost purely electron scattering-driven. Achieving $v_{\rm obs}$ requires $L/L_{\rm Edd} \gtrsim 1$.

Line Driving > Continuum Driving

Introduction

Radiative Acceleration Models

MHD Winds Allow Radiative Acceleration

Evidence for

Magnetocentrifugal Winds

