
Electrodynamics Qualifier Examination

August 15, 2007

General Instructions: In all cases, be sure to state your system of units.
Show all your work, write only on one side of the designated paper, and if
you get stuck on one part, assume a result and proceed onward. The points
given for each part of each problem are indicated. Each problem carries equal
weight.
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1. A point charge Q is located a distance d from the center of a grounded
sphere of radius R, as shown in the figure. The point charge is located
outside the sphere, that is, d > R. Use the image method to answer
the following questions.
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Figure 1: Point charge Q exterior to a grounded conducting sphere.

a) 2 pts. Find the position and magnitude of the image charge Q′ that will
make the potential zero on the surface of the sphere.

b) 2 pts. Show that the image method is applicable to this problem by
proving that the result in a) will make the potential zero at an
arbitrary point on the surface of the sphere.

c) 2 pts. Write down the expression for the potential at an arbitrary point
P (r, θ) outside the sphere. Take the origin of the coordinate sys-
tem to be the center of the sphere.

d) 2 pts. Use the result of part c) to calculate the radial component of the
electric field, Er, outside the sphere.

e) 2 pts. Use Gauss’ law to find the total induced charge on the surface of
the sphere.
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2. A thin dielectric film of thickness δ and index of refraction n2 lies
between dielectric media of indices of refraction n1 and n3 as shown
in the figure. Assume n1 < n2 < n3. A light wave of amplitude EI ,

n1 n2 n3

δ

Figure 2: Thin dielectric film of thickness δ and index of refraction n2 sepa-
rating media of indices of refraction n1 and n3, respectively.

wavenumber kI , and frequency ω is incident normally from the left. In
this problem we will find the conditions for there to be no reflected
wave. This phenomenon is of great utility, for example, in reducing
light losses in optical equipment with many glass surfaces.

a) 3 pts. First assume a single interface, at x = 0, bounding two parallel
semi-infinite dielectrics of indices of refraction n1 and n2, respec-
tively. Assuming a normally incident plane wave in medium 1,
calculate the transmission and reflection coefficients, t12 and r12,
defined by

E(x) = EI

(

eik1x + r12 e−ik1x
)

, x < 0,

E(x) = EI t12 eik2x, x > 0,

where ki is the propagation constant in the medium i.

b) 3 pts. Using the reflection and transmission coefficients for each interface
rij and tij found in part a) for normal incidence, namely,

rij =
ni − nj

ni + nj

, tij =
2ni

ni + nj

,

write the ratio of reflected to incident wave amplitudes, ER/EI , for
the three medium interface being considered, as an infinite series
taking multiple reflections into account. (ER is the reflected wave
amplitude in medium 1.)
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c) 1 pt. Show that the series in part a) can be written in closed form using

1

1 − x
= 1 + x + x2 + x3 + . . . .

d) 3 pts. Now show that with n2 =
√

n1n3 and δ = Nλ2/4 (N is an odd
integer and λ2 is the wavelength in the film), ER/EI = 0.
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3. Two parallel-plate capacitors are constructed of square plates with area
A. In capacitor 1, which contains no dielectric material, the plates are
separated by a distance d. Capacitor 2 has a slab of dielectric material
with permittivity ε = Kε0, where ε0 is the permittivity of free space
(= 1 in Gaussian units). The dielectric slab has area A and thickness
H . The separation between the two parallel plates of capacitor 2 is
H(1+1/K). (You may neglect fringe fields at the edges of the plates.)

The top plates of each capacitor are suspended by insulating threads
at opposite ends of the beam of an equal-arm balance. The top plates
have equal masses, and the beam is initially balanced and locked into
place with each top plate parallel to its corresponding bottom plate
which is supported by an insulator. See Figure.
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Figure 3: Parallel-plate capacitors mounted on balance.

a) 2 pts. Calculate C1 and C2, the capacitances of the two capacitors.

b) 2 pts. Each capacitor is charged by connecting it to a battery of voltage
V0, which is subsequently disconnected. If the energy stored in
each capacitor is identical, find d in terms of A, H , and K, and
determine the charges Q1 and Q2 on capacitor 1 and 2 respectively.

c) 4 pts. Now the beam is unlocked (without discharging the capacitors)
and displaced slightly so that the separation between the plates of
capacitor 1 is now equal to d + x and the separation between the
plates of capacitor 2 is now equal to H(1 + 1/K) − x. (Assume
that x ≪ H/K, and that the charge on each capacitor remains the
same as in part b).) Calculate the new capacitance of C1 and C2

and the total energy Utotal stored on the system of two capacitors.
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Is the system stable (tending to decrease x), unstable (tending to
increase x) or neutral (tending to keep x constant)?

d) 2 pts. If in part c), the two top plates are connected together with con-
ducting wires of negligible mass, and likewise the two bottom
plates are electrically connected to each other, is the system sta-
ble, unstable, or neutral? Support your answer with a physical
argument.
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Figure 4: End (left) and side (right) views of the Faraday disc generator. The
disc, of radius b, rotates on a shaft of radius a, at constant angular frequency
ω. The thickness of the disc is d. A constant magnetic field B is applied in
the direction of the shaft. The shaft and the disc are both conductors, and
are in contact with an external resistor R connected between brushes making
contact with the shaft and the circumference of the disc.

4. Consider the Faraday disk generator, shown in the Figure, which is
a fairly realistic design as might be used in mining and refining. A
copper disk, with conductivity σ and inner radius a, outer radius b,
and thickness d, is rotated at a constant angular speed ω in a constant
magnetic field B parallel to the axis of rotation, that is, perpendicular
to the disk. There are continuous radial contacts with the disk at s = a
and s = b, where s is the radial distance from the center of the disk.
Current flows through an external resistor R.

a) 3 pts. What is the emf between the contacts?

b) 3 pts. There must be an electric field associated with this emf due to
the internal resistance of the copper. Use this to find the radial
current I(s) in the disk as a function of the distance from the axis
of the disk.

c) 4 pts. Use the result of part b) to determine the charge density ρ in the
disk in terms of ω, s, B, a, b, d, σ, and R.
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Figure 5: A solid conducting sphere having a cone cut out of its apex. The
cone extends to the center of the sphere. The half angle of the cone is
θ0 = arctan

√
2. The cone is covered with a metal foil which is insulated

from the rest of the sphere. (Thus the interior of the cone is hollow.) A
charge Q is placed on the metal foil.

5. There is a solid metal sphere of radius R with a cone cut out of it, of
half-angle θ0, tan θ0 =

√
2, as shown in the Figure. The cone is covered

with a thin spherical cap to complete the outer surface of the sphere.
This spherical cap, made of metal foil, is insulated from the rest of the
sphere. A total charge Q is placed on this foil cap. Find the potential
everywhere, as follows. Use polar coordinates centered at the center of
the sphere, and with the cone axis coinciding with the z axis.

a) 2 pts. Write down the form of the Legendre polynomial expansion for
the potential in each region, r > R, r < R with θ > θ0, and r < R
with θ < θ0.

b) 2 pts. Determine the potential everywhere in the solid metal region, r <
R, θ > θ0 in terms of the total charge on the system.

c) 6 pts. Determine the potential inside the cone (r < R, θ < θ0) and
outside the sphere (r > R) by requiring that the discontinuity in
the radial component of the electric field be proportional to the
charge density on the foil, while the potential must be continuous
across the foil.
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6. The space-time coordinates of a particle are given by the four-vector
xµ = (ct,x). Here let us use the metric gµν = diag(−1, 1, 1, 1), so the
corresponding covariant vector is xµ = (−ct,x). The four-dimensional
gradient operator is ∂µ = ∂/∂xµ.

a) 3 pts. The relativistic equation of motion of a particle with rest mass m0

and charge e is in Gaussian or Heaviside-Lorentz units

m0
d2xµ

dτ 2
=

e

c
F µν dxν

dτ
,

where the proper-time interval is related to the coordinate time in-
terval by dτ =

√
1 − β2 dt, β = v/c. Here F µν = −F νµ is the field

strength tensor. By requiring that the spatial components of this
equation agree with the Lorentz force law, F = e

(

E + v

c
×B

)

,
determine the nonzero components of F µν in terms of E and B.

b) 3 pts. Show that the time component of the relativistic equation of mo-
tion in part b) is the equation of energy conservation.

c) 4 pts. Show that the particle stress tensor,

T µν(x) =
∫

∞

−∞

dτ m0c
dxµ(τ)

dτ

dxν(τ)

dτ
δ(4)(x − x(τ)),

where xµ(τ) is the space-time trajectory of the particle, satisfies

∂νT
µν =

1

c
F µνjν .

Here the electric current is given by a similar proper-time integral,

1

c
jµ(x) =

∫

∞

−∞

dτ e
dxµ

dτ
δ(4)(x − x(τ)).

This is an expression of energy-momentum conservation, stating
the balance between the particle and field contributions.
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