QUANTUM MECHANICS I-Physics 3803

I Lagrangian and Hamiltonian Dynamics

- 1. Introduction
- 2. The Lagrangian, the Action, and Hamilton's Principle
- 3. Calculus of Variations
- 4. Functional Derivatives
- 5. Back to Hamilton's Principle
- 6. More Degrees of Freedom
- 7. The Euler-Lagrange equation
- 8. The Advantages of the Lagrangian Formalism
- 9. Quantum Mechanics and the Sum Over Paths
- 10. The Hamiltonian Dynamics
- 11. The Hamiltonian and Energy
- 12. Advantages of the Hamiltonian Formalism
- 13. The Hamiltonian and Quantum Mechanics
- 14. Postulates of Quantum Mechanics
- 15. Quantum Correspondence Principle
- 16. The Wave Equations

II Mathematical Tools [Griffiths 3]

- 1. Linear Vector Spaces
- 2. Inner Product and Inner Product Spaces
- 3. Dirac Notation
- 4. Linear Operators
- 5. Eigenvectors and Eigenvalues
- 6. Expectation Value
- 7. The Uncertainty Principle
- 8. Dirac Delta Functions
- 9. Operators in Infinite Dimensions

- 10. Hilbert Space and Fourier Transform
- 11. The Momentum Space or the p-basis

III One-dimensional Schrödinger Equation [Griffiths 1 and 2]

- 1. The Postulates of Quantum Mechanics
- 2. Implications of the Postulates
- 3. Expectation Value
- 4. The Uncertainty Principle
- 5. Ehrenfest's Theorem
- 6. Stationary State Solutions
- 7. Equation of continuity
- 8. The Schrödinger Equation: (a) Free Particle, (b) Infinite Square Well, (c) The Delta-Function Potential, (d) Finite Square Well.

IV Harmonic Oscillator [Griffiths 2.3]

- 1. Introduction
- 2. Energy Eigenstates of the Harmonic Oscillator
- 3. The Harmonic Oscillator in the Coordinate Basis

V Angular Momentum [Griffiths 4.1 and 4.3]

- 1. Two Dimensions
- 2. Three Dimensions
- 3. Schrödinger equation for spherically symmetric potentials

VI Hydrogen Atom [Griffiths 4.2]

- 1. Relative Motion of Two Particles
- 2. Introduction to the Hydrogen Atom
- 3. Fundamental Quantities Associated with Hydrogen Atom
- 4. Numerical Estimates
- 5. Comparison with Experiments