PHYS 5213/4213: Nuclear and Particle Physics, Autumn 2021 Problem Set 9 - due November 18

Problems (1): Dirac Equation in an Electromagnetic Field

The Dirac equation for a fermion with charge Q in an electromagnetic field is

$$
H \psi=E \psi \quad \text { with } \quad E=i \hbar \frac{\partial}{\partial t}
$$

and the Hamiltonian is a 4×4 matrix of the following form

$$
H=c \vec{\alpha} \cdot\left(\vec{P}-\frac{Q}{c} \vec{A}\right)+\beta m c^{2}+Q \Phi
$$

In the non-relativistic limit, we have

$$
E=E^{\prime}+m c^{2}, \text { with } E^{\prime} \ll m c^{2}
$$

Let us consider the wave function of the form

$$
\psi(\vec{x}, t)=\psi^{\prime}(\vec{x}, t) e^{-(i / \hbar) m c^{2} t} \text { and } \psi^{\prime}=\binom{\phi}{\chi} .
$$

Then the Dirac equation becomes

$$
i \hbar \frac{\partial \phi}{\partial t}=\left[\frac{1}{2 m}\left(\vec{P}-\frac{Q}{c} \vec{A}\right)^{2}-\frac{Q}{m c} \vec{S} \cdot \vec{B}+Q \Phi\right] \phi
$$

where

$$
\vec{S}=\frac{\hbar}{2} \vec{\sigma}
$$

In addition, let us choose the Coulomb gauge $\nabla \cdot \vec{A}=0$ and consider an electron in a system with

- a weak electric field, $|Q \Phi| \ll m c^{2}$, and
- a uniform weak magnetic field \vec{B} with $\vec{A}=(1 / 2) \vec{B} \times \vec{r}$.
(a) Apply the tensor notation to show that

$$
(\nabla \times \vec{A})_{i}=B_{i} .
$$

(b) For a weak magnetic field, terms with \vec{A}^{2} / c^{2} are negligible. Show that the equation of motion for ϕ becomes

$$
i \hbar \frac{\partial \phi}{\partial t}=\left[\frac{\vec{P}^{2}}{2 m}+\frac{e}{2 m c} \vec{B} \cdot(\vec{L}+2 \vec{S})-e \Phi\right] \phi
$$

where $Q=-e=$ charge of the electron, $\vec{S}=$ the spin angular momentum, and $\vec{L}=$ the orbital angular momentum.

Problem (2): Dirac Spinors

In natural units, the Lorentz covariant Dirac equation is

$$
\left(i \gamma^{\mu} \partial_{\mu}-m\right) \psi(x)=0
$$

For a free particle, we have a four component eigenfunction of the following form

$$
\psi(x)=u(p) e^{-i p \cdot x}
$$

where u is a 4×1 spinor independent of x. That is

$$
\psi_{n}=u_{n} e^{-i p \cdot x}, \quad n=1,2,3,4
$$

That leads to

$$
\left(\gamma^{\mu} p_{\mu}-m\right) u(p)=0
$$

or

$$
(\not p-m) u(p)=0
$$

with the slash notation $\not p=\gamma^{\mu} p_{\mu}$.
We often choose

$$
\begin{aligned}
u^{(s)} & =N\binom{\phi^{(s)}}{\frac{\vec{\sigma} \cdot \vec{p}}{E+m} \phi^{(s)}} \quad E>0 \\
u^{(s+2)} & =N\binom{\frac{-\vec{\sigma} \cdot \vec{p}}{|E|+m} \chi^{(s)}}{\chi^{(s)}} \quad E<0
\end{aligned}
$$

and

$$
v^{(1,2)}(p)=u^{(4,3)}(-p)
$$

where $s=1,2, N=\sqrt{E+m}$ is the normalization constant, and

$$
\phi^{(1)}=\chi^{(1)}=\binom{1}{0} \quad \text { and } \quad \phi^{(2)}=\chi^{(2)}=\binom{0}{1} .
$$

The spinors u (fermion) and v (anti-fermion) satisfy the following orthogonality relations

$$
u^{(r)^{\dagger}} u^{(s)}=2 E \delta_{r s} \quad \text { and } \quad v^{(r)^{\dagger}} v^{(s)}=2 E \delta_{r s}
$$

Let us define $\bar{u} \equiv u^{\dagger} \gamma^{0}$ and $\bar{v} \equiv v^{\dagger} \gamma^{0}$.
(a) Show that $\bar{u}^{(s)} u^{(s)}=2 m$ and $\bar{v}^{(s)} v^{(s)}=-2 m$.
(b) Derive the completeness relations

$$
\begin{aligned}
\sum_{s=1,2} u^{(s)}(p) \bar{u}^{(s)}(p) & =\not p+m \\
\sum_{s=1,2} v^{(s)}(p) \bar{v}^{(s)}(p) & =\not p-m
\end{aligned}
$$

These relations are used extensively in the evaluation of Feynman diagrams.

Problem (3): Maxwell equations

In classical electrodynamics with the Heaviside-Lorentz conventions and $c=1$, the 4 -vector potential is defined as

$$
A^{\mu}=(\Phi, \vec{A})
$$

and the 4 -vector current density is defined to be

$$
J^{\mu} \equiv(\rho, \vec{J})
$$

Furthermore, let us defined a second-rank antisymmetric field-strength tensor as

$$
F^{\mu \nu} \equiv \partial^{\mu} A^{\nu}-\partial^{\nu} A^{\mu}
$$

then we can express the first two Maxwell equations with sources as

$$
\partial_{\mu} F^{\mu \nu}=\partial_{\mu} \partial^{\mu} A^{\nu}=J^{\nu}
$$

with the Lorenz condition $\partial_{\mu} A^{\mu}=0$.
Exercise: Show that

$$
\square A^{\nu}=J^{\nu},
$$

that is

$$
\begin{aligned}
\partial_{\mu} F^{\mu 0} & =\partial_{\mu} \partial^{\mu} A^{0}=J^{0}=\rho, \quad \text { and } \\
\partial_{\mu} F^{\mu i} & =\partial_{\mu} \partial^{\mu} A^{i}=J^{i}, \quad i=1,2,3 .
\end{aligned}
$$

Problem (4): Polarization Vectors for a Massive Vector Particle

For a vector particle of mass M, energy E, and momentum \vec{k} along the z axis, the polarization vectors can be expressed as

$$
\begin{aligned}
\epsilon^{\mu}(\lambda= \pm 1) & =\mp \frac{1}{\sqrt{2}}(0,1, \pm i, 0), \text { and } \\
\epsilon^{\mu}(\lambda=0) & =(|\vec{k}|, 0,0, E) / M
\end{aligned}
$$

that are called circular polarization vectors.

- Determine how $\vec{\epsilon}(\lambda=1)$ and $\vec{\epsilon}(\lambda=-1)$ transform under a rotation ϕ about the z axis.
- Show that every polarization vector satisfies the following relations

$$
\begin{aligned}
\epsilon_{\mu} k^{\mu} & =0 \text { and } \\
\epsilon_{\mu}^{*} \epsilon^{\mu} & =-1
\end{aligned}
$$

- Show that the completeness relation is

$$
\sum_{\lambda} \epsilon_{\mu}^{*}(\lambda) \epsilon_{\nu}(\lambda)=-g_{\mu \nu}+\frac{k_{\mu} k_{\nu}}{M^{2}} .
$$

N.B. There is a minus sign in the definition of $\epsilon(\lambda=+1)$. This is a standard phase convention used in the construction of the spherical harmonics $Y_{\ell m}$ for $\ell=1$ and $m= \pm 1$.

