Problem (1)

In a system with a harmonic oscillator, a particle starts out in

\[|\psi(0)\rangle = \frac{1}{\sqrt{2}} (|0\rangle + |1\rangle). \tag{1} \]

at \(t = 0 \) with \(E_n = \hbar \omega (n + 1/2) \).

(a) Find \(|\psi(t)\rangle \) in terms of \(\omega \).

(b) Find \(\langle X(0) \rangle, \langle P(0) \rangle, \langle X(t) \rangle, \) and \(\langle P(t) \rangle \).

(c) Find \(\frac{d}{dt}\langle X(t) \rangle \) and \(\frac{d}{dt}\langle P(t) \rangle \) by using the Ehrenfest’s Theorem and solve for \(\langle X(t) \rangle \), and \(\langle P(t) \rangle \).

Problem (2)

Let’s define the angular momentum operator as

\[L_i = (\vec{X} \times \vec{P})_i = \epsilon_{ijk} X_j P_k, \quad i, j, k = 1, 2, 3 \quad \text{and} \]

where \(\epsilon_{ijk} \) is the anti-symmetric Levi-Civita symbol.

Find the following commutation relations:

(a) \([L_i, X_j], \)

(b) \([L_i, P_j], \)

(c) \([L_i, L_j], \)

(d) \([L_i, L^2], \)

where \(L^2 = L_1^2 + L_2^2 + L_3^2 = L_j L_j \) (repeated indices imply summation).

Problem (3)

To study the eigenvalue spectrum of the angular momentum operators, we define

\[L_+ \equiv L_1 + iL_2, \quad \text{and} \]

\[L_- \equiv L_1 - iL_2. \]

Find the following commutation relations:
(a) \([L_+, L_3]\),

(b) \([L_-, L_3]\),

(c) \([L_+, L_-]\).

Problem (4)

The Pauli spin matrices are defined as

\[
\sigma_1 = \sigma_x = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}, \quad \sigma_2 = \sigma_y = \begin{pmatrix} 0 & -i \\ i & 0 \end{pmatrix}, \quad \sigma_3 = \sigma_z = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}.
\] (2)

Show that

(a) \(\sigma_1^2 = \sigma_2^2 = \sigma_3^2 = I = \) the 2 \(\times\) 2 unit matrix,

(b) \(\sigma_i \sigma_j = \delta_{ij} + i \epsilon_{ijk} \sigma_k, \quad i, j, k = 1, 2, 3,\) where \(\delta_{ij}\) is the Kronecker delta, and \(\epsilon_{ijk}\) is the anti-symmetric Levi-Civita symbol,

(c) \([\sigma_i, \sigma_j] = 2i \epsilon_{ijk} \sigma_k\) (the commutation relation),

(d) \(\{\sigma_i, \sigma_j\} = 2\delta_{ij}\) (the anti-commutation relation).