PHYS 5213/4213: Nuclear and Particle Physics, Autumn 2021 Problem Set 8 - due November 11

Problem 1: Dirac Matrices

To combine quantum mechanics with special relativity, Dirac suggested a linear relationship between the Hamiltonian (H) and the momentum (\vec{P})

$$
H=c \vec{\alpha} \cdot \vec{P}+\beta m c^{2}
$$

where α_{i} and β are $N \times N$ matrices.
If H is the correct Hamiltonian, by squaring it we should get back the relation from relativity. That is

$$
\begin{aligned}
c^{2} \vec{P}^{2}+m^{2} c^{4} & =H^{2} \\
& =c^{2}\left[\frac{1}{2}\left\{\alpha_{i}, \alpha_{j}\right\} P_{i} P_{j}+\left\{\alpha_{i}, \beta\right\} m c P_{i}+\beta^{2} m^{2} c^{2}\right]
\end{aligned}
$$

Thus it is clear that the left hand side equals the right hand side if

$$
\begin{aligned}
& \beta^{2}=I \\
& \alpha_{i}^{2}=I
\end{aligned}
$$

and

$$
\begin{aligned}
\left\{\alpha_{i}, \beta\right\} & =0 \\
\left\{\alpha_{i}, \alpha_{j}\right\} & =0 \text { for } i \neq j
\end{aligned}
$$

or

$$
\left\{\alpha_{i}, \alpha_{j}\right\}=2 \delta_{i j}
$$

For $N=4$ let us choose β to be diagonal and traceless.

$$
\begin{aligned}
\beta & =\left(\begin{array}{cc}
I & O \\
O & -I
\end{array}\right) \\
I & =\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right), \text { and } \\
O & =\left(\begin{array}{ll}
0 & 0 \\
0 & 0
\end{array}\right) .
\end{aligned}
$$

In addition, let's choose

$$
\alpha_{i}=\left(\begin{array}{cc}
A_{i} & B_{i} \\
C_{i} & D_{i}
\end{array}\right)
$$

where A_{i}, B_{i}, C_{i} and D_{i} are 2×2 matrices.
Apply $\left\{\alpha_{i}, \beta\right\}=0,\left\{\alpha_{i}, \alpha_{j}\right\}=2 \delta_{i j}, \alpha_{i}^{\dagger}=\alpha_{i}$, and show that

$$
\text { (a) } \alpha_{i}=\left(\begin{array}{cc}
0 & B_{i} \\
B_{i}^{\dagger} & 0
\end{array}\right)
$$

and

$$
\text { (b) } B i^{\dagger} B_{j}+B_{j}^{\dagger} B_{i}=0
$$

We can choose $B_{i}=\sigma_{i}$ with

$$
\begin{aligned}
\sigma_{i}^{\dagger} & =\sigma_{i}, \text { and } \\
\sigma_{i} \sigma_{j}+\sigma_{j} \sigma_{i} & =2 \delta_{i j}
\end{aligned}
$$

then α_{i} 's become

$$
\alpha_{i}=\left(\begin{array}{cc}
0 & \sigma_{i} \\
\sigma_{i} & 0
\end{array}\right) .
$$

Problem 2: Spin of the Electron

Let us define a generalized Pauli matrix (spin operator)

$$
\Sigma_{i} \equiv\left(\begin{array}{cc}
\sigma_{i} & 0 \\
0 & \sigma_{i}
\end{array}\right) \quad \text { with } \xi \equiv\left(\begin{array}{cc}
0 & I \\
I & 0
\end{array}\right)
$$

such that

$$
\alpha_{i}=\xi \Sigma_{i}=\Sigma_{i} \xi
$$

Thus we see that ξ commutes with Σ_{i},

$$
\left[\Sigma_{i}, \Sigma_{j}\right]=2 i \epsilon_{i j k} \Sigma_{k} \text { and }\left[\Sigma_{i}, \beta\right]=0
$$

In terms of these matrices, we can write down the Dirac Hamiltonian as

$$
H=c \vec{\alpha} \cdot \vec{P}+\beta m c^{2}+V(r)=c \xi \Sigma_{i} \cdot P_{i}+\beta m c^{2}+V(r) .
$$

Here we have added a spherically symmetric potential to allow for interaction. We know that since the Hamiltonian is invariant under rotations, angular momentum must be conserved.
(a) Show that

$$
\left[L_{3}, H\right]=i \hbar c \xi\left(\Sigma_{1} P_{2}-\Sigma_{2} P_{1}\right)
$$

(b) Show that

$$
\left[\Sigma_{3}, H\right]=2 i c \xi\left(\Sigma_{2} P_{1}-\Sigma_{1} P_{2}\right)
$$

(c) Find the operator $\left(J_{3}\right)$ for the total angular momentum that commutes with the Hamiltonian as a function of L_{3} and Σ_{3}.
(d) Find the spin operator $(\vec{S}=\vec{J}-\vec{L})$ and the spin (s) for the electron.

Problem 3: Dirac Equation in an Electromagnetic Field

The classical interaction of a particle with charge Q can be expressed as

$$
U(\vec{x}, \dot{\vec{x}})=-\frac{Q}{c} \vec{v} \cdot \vec{A}+Q \Phi
$$

from a 4 -vector potential $A^{\mu}=(\Phi, \vec{A})$ where $\Phi=$ the electric potential and $\vec{A}=$ the magnetic vector potential. We can define a velocity operator $\vec{v}=c \vec{\alpha}$ in quantum mechanics for the Dirac equation. The the Hamiltonian becomes

$$
H=c \vec{\alpha} \cdot\left(\vec{P}-\frac{Q}{c} \vec{A}\right)+\beta m c^{2}+Q \Phi
$$

and the Dirac equation becomes

$$
\left[c \vec{\alpha} \cdot\left(\vec{P}-\frac{Q}{c} \vec{A}\right)+\beta m c^{2}+Q \Phi\right] \psi=i \hbar \frac{\partial \psi}{\partial t}
$$

In the non-relativistic limit, we have

$$
E=E^{\prime}+m c^{2}, \text { with } E^{\prime} \ll m c^{2}
$$

Let us consider the wave function of the form

$$
\psi(\vec{x}, t)=\psi^{\prime}(\vec{x}, t) e^{-(i / \hbar) m c^{2} t} \text { and } \psi^{\prime}=\binom{\phi}{\chi}
$$

Show that

$$
i \hbar \frac{\partial \phi}{\partial t}=\left[\frac{1}{2 m}\left(\vec{P}-\frac{Q}{c} \vec{A}\right)^{2}-\frac{Q}{m c} \vec{S} \cdot \vec{B}+Q \Phi\right] \phi
$$

where

$$
\vec{S}=\frac{\hbar}{2} \vec{\sigma} .
$$

Hint: Let's define

$$
\vec{\pi}=\vec{P}-\frac{Q}{c} \vec{A}
$$

and rewrite the Dirac equation as

$$
i \hbar \frac{\partial}{\partial t} \psi^{\prime}=\left[c \vec{\alpha} \cdot \vec{\pi}+(\beta-I) m c^{2}+Q \Phi\right] \psi^{\prime}
$$

with

$$
\left(-2 m c^{2}+Q \Phi-i \hbar \frac{\partial}{\partial t}\right) \chi \simeq-2 m c^{2} \chi
$$

