PHYS 5213/4213: Nuclear and Particle Physics, Autumn 2021 Problem Set 7 - due November 03

Problem (1)

The magnitude of the magnetic dipole moment (MDM) of an elementary fermion such as a quark of charge q, mass m, and spin s is

$$
\begin{equation*}
\vec{\mu}=\left(\frac{q \hbar}{m c}\right) \vec{s} . \tag{1}
\end{equation*}
$$

(a) What are the values of the MDM of the up quark $\left(\mu_{u}\right)$ and the MDM of the down quark $\left(\mu_{d}\right)$ in terms of the proton charge e and the quark masses m_{u} and m_{d} ?
(b) If the neutron were an elementary particle, what would be the naive value of the neutron magnetic dipole moment μ_{n} (naive)?
(c) The neutron has a measured magnetic dipole moment

$$
\begin{equation*}
\mu_{\text {neutron }}=\frac{1}{3}\left(-\mu_{u}+4 \mu_{d}\right)=\mu_{n} \mu_{N} \tag{2}
\end{equation*}
$$

where $m_{p}=938 \mathrm{MeV}$ and

$$
\mu_{N}=\frac{e \hbar}{2 m_{p} c} .
$$

Find the value of μ_{n} with effective quark masses $m_{u}=m_{d}=336 \mathrm{MeV}$.

Problem (2)

In the energy basis of a harmonic oscillator, we have

$$
\begin{aligned}
X & =\sqrt{\frac{\hbar}{2 m \omega}}\left(a+a^{\dagger}\right) \quad \text { and } \\
P & =-i \sqrt{\frac{\hbar m \omega}{2}}\left(a-a^{\dagger}\right)
\end{aligned}
$$

where a and a^{\dagger} are the lowering and raising operators, respectively.
Let us define the operator $a^{\dagger} a$ as the number operator

$$
N \equiv a^{\dagger} a
$$

and the Hamiltonian can be expressed as

$$
H=\hbar \omega\left(N+\frac{1}{2}\right) .
$$

The eigenvector is $|n\rangle$ such that

$$
N|n\rangle=n|n\rangle
$$

where n is the eigenvalue and the vectors $|n\rangle$ form a set of orthonormal basis vectors. Then we have

$$
H|n\rangle=\hbar \omega\left(N+\frac{1}{2}\right)|n\rangle=E_{n}|n\rangle
$$

with

$$
E_{n}=\left(n+\frac{1}{2}\right) \hbar \omega .
$$

(a) and (b) Find c_{n} and d_{n} for lowering and raising operators:
(a) $a|n\rangle=c_{n}|n-1\rangle$, and
(b) $a^{\dagger}|n\rangle=d_{n}|n+1\rangle$.
(c) and (d) Calculate the following matrix elements for a quantum oscillator:
(c) $\langle 2| X^{3}|0\rangle$, and
(d) $\langle 2| X^{3}|1\rangle$.

Problem (3)

Let us consider three 3×3 matrices G_{i} with elements given by

$$
\left(G_{i}\right)_{j k}=-i \hbar \epsilon_{i j k} \quad i, j, k=1,2,3
$$

where j and k are the row and column indices.
(a) Show that G_{i} 's satisfy the angular momentum commutation relations: $\left[G_{i}, G_{j}\right]=i \hbar \epsilon_{i j k} G_{k}$.
(b) Find the matrix G_{3}, then calculate the eigenvalues λ_{i} and normalized eigenvectors $\left|\lambda_{i}\right\rangle$ of G_{3}.
(c) Find a unitary matrix that transforms G_{3} to J_{3} for $j=1$ with J_{3} being diagonal

$$
J_{3}=\hbar\left(\begin{array}{rrr}
1 & 0 & 0 \\
0 & 0 & 0 \\
0 & 0 & -1
\end{array}\right)
$$

N.B. This unitary matrix transforms the Cartesian space representation of the angular momentum operator G_{i} to its spherical basis representation J_{i} for $j=1$. This problem is helpful in understanding the spin of photon.

Problem (4)

The Pauli spin matrices are defined as

$$
\sigma_{1}=\sigma_{x}=\left(\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right), \quad \sigma_{2}=\sigma_{y}=\left(\begin{array}{rr}
0 & -i \\
i & 0
\end{array}\right), \quad \sigma_{3}=\sigma_{z}=\left(\begin{array}{rr}
1 & 0 \\
0 & -1
\end{array}\right)
$$

(a) Three two-by-two matrices $\left(t_{i}, i=1,2,3\right)$ satisfy the relations

$$
\left[t_{1}, t_{2}\right]=-i t_{3}, \quad\left[t_{2}, t_{3}\right]=-i t_{1}, \quad\left[t_{3}, t_{1}\right]=-i t_{2} .
$$

Determine such a set of matrices.
(b) Show that

$$
e^{i \pi \sigma_{z} / 2}=i \sigma_{z} .
$$

(c) Show that

$$
U(\theta)=e^{-i \vec{\theta} \cdot \vec{\sigma} / 2}=\cos \frac{\theta}{2}-i(\hat{\theta} \cdot \vec{\sigma}) \sin \frac{\theta}{2} .
$$

where $\vec{\theta}=\theta \hat{\theta}$ and $\hat{\theta}=$ the unit vector.
N.B. For a quantum operator, an expression of this form is to be interpreted as

$$
e^{\Omega}=1+\Omega+\frac{1}{2} \Omega^{2}+\frac{1}{3!} \Omega^{3}+\cdots=\sum_{n=0}^{\infty} \frac{1}{n!} \Omega^{n} .
$$

