PHYSICS 6433
 Problem Set 7 - Due April 14, 2017

Problems (1): Projection Operators

We can define operators P_{L} and P_{R} that project out the left and right handed components of a spinor. Use γ_{5} to define properly normalized projection operators that satisfy
(a) $P_{L}^{2}=P_{L}$ and $P_{R}^{2}=P_{R}$,
(b) $P_{L} P_{R}=0$, and
(c) $P_{L}+P_{R}=1$.

Problems (2): Weyl Representation or Chiral Representation

(a) Show that unitary transformations of the Weyl representation of the gamma matrices preserve the properties

$$
\begin{aligned}
S^{0 i \dagger} & =-S^{0 i} \text { and } \\
S^{i j^{\dagger}} & =S^{i j}
\end{aligned}
$$

of the boost and rotation generators of the Lorentz group. We can choose

$$
S^{\mu \nu}=\sigma^{\mu \nu} \equiv \frac{i}{2}\left[\gamma^{\mu}, \gamma^{\nu}\right]
$$

(b) Show that the Weyl and Dirac representations are related by a unitary transformation.

Problems (3): Peskin and Schroeder, Problem 3.2

Problems (4): Dirac Field Bilinears

We can choose $\Lambda_{\frac{1}{2}}=S(\Lambda)$ and $P=\gamma^{0}$ to represent Lorentz transformation and the parity operation on spinors. By investigating transformations under parity and the proper Lorentz transformation, demonstrate that
(a) $\bar{\psi} \psi$ transforms as a scalar,
(b) $\bar{\psi} \gamma^{5} \psi$ transforms as a pseudoscalar,
(c) $\bar{\psi} \gamma^{\mu} \psi$ transforms as a vector,
(d) $\bar{\psi} \gamma^{\mu} \gamma^{5} \psi$ transforms as a pseudovector or an axial vector, and
(e) $\bar{\psi} \sigma^{\mu \nu} \psi$ transforms as a second rank tensor.

