PHYS 5213/4213: Nuclear and Particle Physics, Autumn 2021

Problem Set 6 – due October 27

The simplest non-cyclic group is usually called the four-group or the dihedral group D_2 . This group has four elements $\{e, a, b, c\}$ that follow the multiplication rules in Table 1.

Table 1:	Multipl	lication	table	of the I	\mathcal{D}_2 group.
	е	a	b	с	
	a	e	с	b	
	b	с	e	a	
	с	b	a	е	

1). Is D_2 an Abelian group? Justify your answer.

2). What are the subgroups of D_2 ?

3). In the two-dimensional Euclidean space, consider a group of four elements: e = the identity, a = the reflection with respect to (w.r.t.) the horizontal direction, b = the reflection w.r.t. the vertical direction, $c = the rotation by \pi$ around the origin. Find 2 × 2 matrices representing these operations with the basis vectors $u_1 = \hat{x}$ and $u_2 = \hat{y}$, then show that these matrices form a representation of D_2 .

The Quark Model of Hadrons

4). There are six quarks and six leptons in the Standard Model. The quarks and the leptons are point-like fermions with spin quantum number of $\frac{1}{2}$.

the flavor qu	iantum numbe	ers: $s = strategies$	angeness,	c = char	m, b = b	pottom, a	and $t = t$	op.
Quark	Mass	Q	В	Ι	\mathbf{S}	с	b	t
	(GeV)	(e)						
u	5×10^{-3}	+2/3	1/3	1/2	0	0	0	0
d	9×10^{-3}	-1/3	1/3	1/2	0	0	0	0
\mathbf{S}	0.2	-1/3	1/3	0	-1	0	0	0
с	1.4	+2/3	1/3	0	0	+1	0	0
b	4.8	-1/3	1/3	0	0	0	-1	0

0

0

0

0

+1

Table 2: Properties of quarks, Q = electric charge, I = isosipn, B = baryon number, and the flavor quantum numbers: s = strangeness, c = charm, b = bottom, and t = top.

There are two classes of hadrons: mesons and baryons,

+2/3

175

t

• every meson can be described as a bound state of a quark and an antiquark,

1/3

• every baryon can be considered as constructed out of three quarks.

The quark contents are presented for a representative set of relatively long-lived hadrons in Table 3. Find the electric charge (Q), the baryon number (B), the strangeness (S), and the strong hypercharge Y = B + S for every hadron in this table, then apply the Gell-Mann-Nishjima relation

$$Q = I_3 + \frac{Y}{2}$$

to find the third component of isospin I_3 . All these quantum numbers are additive.

Hadron	3: A representative set of Quarks	Q	В	\mathbf{S}	Y	I_3
		(e)				
π^+	$u ar{d}$					
π^0	$\frac{1}{\sqrt{2}}(u\bar{u} - d\bar{d})$					
π^{-}	$dar{u}$					
K^+	$uar{s}$					
K^0	$d\bar{s}$					
\bar{K}^0	$sar{d}$					
K^{-}	$sar{u}$					
η	$\frac{1}{\sqrt{6}}(u\bar{u}+d\bar{d}-2s\bar{s})$					
η'	$\frac{1}{\sqrt{3}}(u\bar{u} + d\bar{d} + s\bar{s})$					
p	uud					
n	udd					
Σ^+	uus					
Σ^0	$\frac{1}{\sqrt{2}}(ud+du)s$					
Σ^{-}	dds					
Λ^0	$\frac{1}{\sqrt{2}}(ud-du)s$					
Ξ^0	uss					
Ξ^-	dss					
Ω^{-}	\$\$\$					

Table 3: A representative set of relatively long-lived hadrons.