PHYS 5213/4213: Nuclear and Particle Physics, Autumn 2021

Problem Set 5 - due October 20

Problem (1)
A muon at rest decays into an electron and two neutrinos $\mu^{-} \rightarrow e^{-} \bar{\nu}_{e} \nu_{\mu}$. Find the maximum energy and the maximum momentum for the electron $\left(E_{e}^{\max }\right.$ and $\left.\left|\vec{p}_{e}\right|^{\text {max }}\right)$ in terms of m_{μ} and m_{e} with $m_{\nu}=0$.

Problem (2)
For a system with a spherically symmetric potential, the complete solution to the Schrödinger equation is

$$
\psi_{\ell, m}(r, \theta, \phi)=R(r) Y_{\ell, m}(\theta, \phi)
$$

where

$$
Y_{\ell, m}=\epsilon \sqrt{\frac{2 \ell+1}{4 \pi} \frac{(\ell-|m|)!}{(\ell+|m|)!}} P_{\ell, m}(\cos \theta) e^{i m \phi}
$$

with $\epsilon=(-1)^{m}$ for $m>0$ and $\epsilon=+1$ for $m<0$,

$$
P_{\ell, m}(z)=\left(1-z^{2}\right)^{\frac{|m|}{2}} \frac{d^{|m|}}{d z^{|m|}} P_{\ell}(z)
$$

with $z=\cos \theta$ and

$$
P_{\ell}(z)=\frac{1}{2^{\ell} \ell!} \frac{d^{\ell}}{d z^{\ell}}\left(z^{2}-1\right)^{\ell} .
$$

Parity means reflecting a vector through the origin. In spherical coordinates, a position vector is described with $\vec{r}=(r, \theta, \phi)$. Find (a) $\Pi e^{i m \phi}$, (b) $\Pi P_{\ell, m}(z)$, and (c) $\Pi Y_{\ell, m}(\theta, \phi)$, where $\Pi=$ the parity operator.

Problem (3)
An element of a $S U(N)$ group is often expressed as

$$
U(\vec{\alpha})=e^{i \vec{\alpha} \cdot \vec{G}}=e^{i \alpha_{i} G_{i}}
$$

and it is represented with a $N \times N$ matrix.
Show that each generator G_{i}, (a) is traceless, (b) is Hermitian, and (c) it has $N^{2}-1$ independent parameters. Hint: You might need to use

$$
\operatorname{det} U(\vec{\alpha})=e^{\operatorname{Tr} \ln U(\vec{\alpha})}=e^{i \operatorname{Tr}(\vec{\alpha} \cdot \vec{G})}
$$

Problem (4)
In the fundamental representation, a general vector is a doublet

$$
\psi=\binom{\psi^{1}}{\psi^{2}}
$$

and it becomes ψ^{\prime} under a unitary $\mathrm{SU}(2)$ transformation

$$
\psi^{\prime}=U(\alpha) \psi, \quad \text { with } \quad U(\alpha)=e^{i \alpha_{i} t_{i}}, \quad i=1,2,3
$$

where $t_{i}=(1 / 2) \sigma_{i}$.
The complex conjugate representation has state vectors

$$
\psi^{*}=\binom{\left(\psi^{1}\right)^{*}}{\left(\psi^{2}\right)^{*}}
$$

and they transform as

$$
\psi^{*} \rightarrow\left(\psi^{*}\right)^{\prime}=\left(\psi^{\prime}\right)^{*}=U^{*} \psi^{*}, \quad \text { where } \quad \psi^{*}=\binom{\left(\psi^{1}\right)^{*}}{\left(\psi^{2}\right)^{*}} \equiv\binom{\psi_{1}}{\psi_{2}}
$$

Let us study the special property of the $\mathrm{SU}(2)$ complex conjugate representation with an infinitesimal transformation

$$
U(\epsilon)=I+i \epsilon_{i} t_{i}, \quad \epsilon_{i} \rightarrow 0+
$$

(a) For every 2×2 unitary matrix U with unit determinant, show that there exists a matrix S which connects U to its complex conjugate matrix U^{*} through the similarity transformation

$$
S^{-1} U S=U^{*}
$$

such that

$$
\tilde{\psi}^{\prime}=U(\alpha) \tilde{\psi} \quad \text { where } \quad \tilde{\psi} \equiv S \psi^{*}
$$

(b) Suppose $\psi^{i}, i=1,2$ are the bases for the fundamental representation of $\mathrm{SU}(2)$ with eigenvalue equations

$$
t_{3} \psi^{1}=\frac{1}{2} \psi^{1} \quad \text { and } \quad t_{3} \psi^{2}=-\frac{1}{2} \psi^{2}
$$

Evaluate the eigenvalues of t_{3} operating on $\left(\psi^{1}\right)^{*}$ and $\left(\psi^{2}\right)^{*}$ respectively.

