PHYS 3803: Quantum Mechanics I **Problem Set 4 – Due February 26, 2021**

1). The Fourier transform of f(x) is defined as

$$g(k) \equiv \frac{1}{\sqrt{2\pi}} \int e^{-ikx} f(x) dx$$

Express the Fourier transforms G(k) of the following functions F(x) in terms of g(k).

- (a) f(x+a)
- (b) $f^*(x)$
- (c) f(-x)
- (d) $e^{i\mu x} f(x)$ where μ is real.
- (e) df(x)/dx

2). Apply two dimensional polar coordinates and Show that

$$I(\alpha) = \int_{-\infty}^{\infty} e^{-\alpha x^2} dx = \sqrt{\frac{\pi}{\alpha}} ,$$

which is the Gaussian integral. Then find the Fourier transform of $f(x) = e^{-\alpha^2 x^2/2}$.

3). (Griffiths 3.23) The Hamiltonian for a certain two-level system is

$$H = \epsilon(|e_1\rangle\langle e_1| - |e_2\rangle\langle e_2| + |e_1\rangle\langle e_2| + |e_2\rangle\langle e_1|)$$

where $|e_1\rangle$ and $|e_2\rangle$ are the orthonormal basis vectors and ϵ is a number with the dimension of energy. Find the matrix H as well as its eigenvalues and eigenvectors as a linear combination of $|e_1\rangle$ and $|e_2\rangle$.

4). (Griffiths 3.30) Let us consider a wave function

$$\psi(x) = \frac{A}{x^2 + \alpha^2} , (-\infty < x < +\infty)$$

at t = 0, for constants A and α .

- (a) Determine A, by normalizing $\psi(x)$.
- (b) Find $\langle X \rangle$, $\langle X^2 \rangle$, and ΔX .
- (c) Find the momentum space wave function $\Phi(p)$.
- (d) Use $\Phi(p)$ to calculate $\langle P \rangle$, $\langle P^2 \rangle$, and ΔP .
- (e) Check the Heisenberg uncertainty principle for this state.