PHYS 3803: Quantum Mechanics I

Problem Set 3 – Due February 17, 2021

1). (Griffiths 3.22) Consider a three-dimensional vector space spanned by an orthonormal basis $|e_1\rangle$, $|e_2\rangle$, $|e_3\rangle$. Two ket vectors are given by

$$\begin{aligned} |\alpha\rangle &= i|e_1\rangle - 2|e_2\rangle - i|e_3\rangle \\ |\beta\rangle &= i|e_1\rangle + 2|e_3\rangle \ . \end{aligned}$$

- (a) Construct $\langle \alpha |$ and $\langle \beta |$ in terms of the dual basis $\langle e_1 |, \langle e_2 |, \langle e_3 |$.
- (b) Find $\langle \alpha | \beta \rangle$ and $\langle \beta | \alpha \rangle$, and confirm that $\langle \beta | \alpha \rangle = \langle \alpha | \beta \rangle^*$.
- (c) Find all nine matrix elements $\Omega_{mn}, m, n = 1, 2, 3$ of the operator $\Omega = |\alpha\rangle\langle\beta|$ in this basis and construct that matrix Ω . Is it Hermitian?
- 2). Find the eigenvalues and the normalized eigenvectors for a matrix operator Ω ,

$$\Omega = \begin{pmatrix} 2 & 1 & 1 \\ 1 & 0 & -1 \\ 1 & -1 & 2 \end{pmatrix} \ .$$

3). Apply the normalized eigenvectors in Problem 2; construct a unitary matrix U. Then diagonalize Ω with the unitary matrix U.

4). Determine the value of the constant B for

$$t_b(x) = \begin{cases} 0, & \text{for } x^2 > b^2, \text{ and} \\ B(b - |x|) & \text{for } x^2 \le b^2, \ b > 0, \end{cases}$$

such that

$$\lim_{b \to 0} t_b(x) = \delta(x).$$