PHYS 6213: Advanced Particle Physics

Problem Set 3 - due March 11

Problem 1: The QCD Lagrangian

In quantum chromodynamics (QCD), the Lagrangian density is often expressed as

$$
\mathcal{L}=-\frac{1}{4} F_{\mu \nu}^{a} F^{a \mu \nu}-\frac{1}{2 \xi}\left(\partial_{\mu} G^{a \mu}\right)^{2}+\bar{\psi} i \gamma^{\mu} D_{\mu} \psi
$$

where G_{μ}^{a} is a gluon field, ψ is a quark field, the field strength tensor is

$$
F_{\mu \nu}^{a}=\partial_{\mu} G_{\nu}^{a}-\partial_{\nu} G_{\mu}^{a}-g_{s} f^{a b c} G_{\mu}^{b} G_{\nu}^{c},
$$

T^{a} are $S U(3)$ generators, and the covariant derivative is

$$
\mathcal{D}_{\mu}=\partial_{\mu}+i g_{s} G_{\mu}^{a} T^{a}, \quad a=1, \cdots, 8
$$

with g_{s} being the strong coupling.
(a) Draw the Feynman diagram and describe the Feynman rule for the gluon propagator in the R_{ξ} gauge with results from Problem 1 of Problem Set 2.
(b) Draw the Feynman diagram and derive the Feynman rule (Λ_{μ}^{a}) for $G q \bar{q}$ interactions with

$$
\begin{aligned}
i T_{\beta \alpha} & =\left\langle g\left(p_{3}\right)\right|-i \int \mathcal{H}_{I}(x) d^{4} x\left|u\left(p_{1}\right) \bar{u}\left(p_{2}\right)\right\rangle \\
& =(2 \pi)^{4} \delta^{4}\left(p_{3}-p_{\alpha}\right) \bar{v}\left(p_{2}\right)\left(\Lambda_{\mu}\right) u\left(p_{1}\right)\left(\epsilon^{\mu}\right)^{*}
\end{aligned}
$$

PROBLEM 2: Matrix Element of $u \bar{u} \rightarrow t \bar{t}$
Draw Feynman diagrams and evaluate the matrix element squared $\left.\left.\langle | M\right|^{2}\right\rangle$ for $u\left(p_{1}\right) \bar{u}\left(p_{2}\right) \rightarrow t\left(p_{3}\right) \bar{t}\left(p_{4}\right)$, summed over all spins and colors as well as averaged over initial spins and colors in the Feynman gauge for gluons with $\xi=1$.

PROBLEM 3: Cross Section of $q \bar{q} \rightarrow t \bar{t}$ at LHC
Evaluate the cross section $p p \rightarrow t \bar{t}+X$ as well as from quark antiquark annihilation alone $q \bar{q} \rightarrow t \bar{t}$, and gluon fusion alone $g g \rightarrow t \bar{t}$, at the Large Hadron Collider for collider energy $\sqrt{S}=13,14$, and 100 TeV , by using MadGraph with $\mu_{F}=\mu_{R}=m_{t}=173.2$ GeV , where $\mu_{F}=$ the factorization scale and $\mu_{R}=$ the renormalization scale.

