PHYS 6433: Quantum Field Theory Problem Set 3 - Due February 08, 2017

Problem (1): Finite Rotation for a Dirac Spinor

Let us consider a finite rotation of angle ϕ about the z-axis with $x^{\prime}=\Lambda x$ and

$$
\omega_{12}=\epsilon_{123} \phi_{3}=\phi_{3}=\phi \quad \text { where } \quad \omega_{i j}=\epsilon_{i j k} \phi_{k}
$$

Then the Dirac spinor will change under this rotation as $\psi^{\prime}\left(x^{\prime}\right)=S_{R}(\Lambda) \psi(x)$.
(a) Find the rotation operator Λ as a 4×4 matrix.
(b) Find $\sigma_{i j}$ for an infinitesimal rotation

$$
S_{R}(\Lambda)=I-\frac{i}{4} \sigma_{i j} \omega^{i j}
$$

(c) Show that for a finite rotation of angle ϕ about the z-axis,

$$
S_{R}(\Lambda)=e^{-\frac{i}{2} \Sigma_{3} \phi_{3}}=I \cos \left(\frac{\phi}{2}\right)-i \Sigma_{3} \sin \left(\frac{\phi}{2}\right) \quad \text { where } \quad \Sigma_{3}=\sigma_{12}=\left(\begin{array}{cc}
\sigma_{3} & 0 \\
0 & \sigma_{3}
\end{array}\right) .
$$

(d) Find the rotation operator $S_{R}(\Lambda)$ as a 4×4 matrix for a Dirac spinor.

Problem (2): Maxwell equations

In classical electrodynamics with the Heaviside-Lorentz conventions and $c=1$, the 4 -vector potential is defined as

$$
A^{\mu}=(\Phi, \vec{A}) ;
$$

and the 4 -vector current density is defined to be

$$
J^{\mu} \equiv(\rho, \vec{J})
$$

Furthermore, let us defined a second-rank antisymmetric field-strength tensor as

$$
F^{\mu \nu} \equiv \partial^{\mu} A^{\nu}-\partial^{\nu} A^{\mu}
$$

then we can express the first two Maxwell equations with sources as

$$
\partial_{\mu} F^{\mu \nu}=\partial_{\mu} \partial^{\mu} A^{\nu}=J^{\nu},
$$

with the Lorenz condition $\partial_{\mu} A^{\mu}=0$.
Show that

$$
\square A^{\nu}=J^{\nu},
$$

that is

$$
\begin{aligned}
\partial_{\mu} F^{\mu 0} & =\partial_{\mu} \partial^{\mu} A^{0}=J^{0}=\rho, \quad \text { and } \\
\partial_{\mu} F^{\mu i} & =\partial_{\mu} \partial^{\mu} A^{i}=J^{i}, \quad i=1,2,3 .
\end{aligned}
$$

Problem (3): Lagrangian for Vector Particles

The Lagrangian density of electrodynamics is

$$
\mathcal{L}=-\frac{1}{4} F_{\mu \nu} F^{\mu \nu}-J^{\mu} A_{\mu}
$$

for the photon field A^{μ}. Find the equation of motion for A^{μ}.

Problem (4): Polarization Vectors for a Massive Vector Particle

For a vector particle of mass M, energy E, and momentum \vec{k} along the z axis, the polarization vectors can be expressed as

$$
\begin{aligned}
\epsilon^{\mu}(\lambda= \pm 1) & =\mp \frac{1}{\sqrt{2}}(0,1, \pm i, 0), \text { and } \\
\epsilon^{\mu}(\lambda=0) & =(|\vec{k}|, 0,0, E) / M
\end{aligned}
$$

that are called circular polarization vectors.

- Determine how $\vec{\epsilon}(\lambda=1)$ and $\vec{\epsilon}(\lambda=-1)$ transform under a rotation ϕ about the z axis.
- Show that every polarization vector satisfies the following relations

$$
\begin{aligned}
\epsilon_{\mu} k^{\mu} & =0 \text { and } \\
\epsilon_{\mu}^{*} \epsilon^{\mu} & =-1
\end{aligned}
$$

- Show that the completeness relation is

$$
\sum_{\lambda} \epsilon_{\mu}^{*}(\lambda) \epsilon_{\nu}(\lambda)=-g_{\mu \nu}+\frac{k_{\mu} k_{\nu}}{M^{2}}
$$

N.B. There is a minus sign in the definition of $\epsilon(\lambda=+1)$. This is a standard phase convention used in the construction of the spherical harmonics $Y_{\ell m}$ for $\ell=1$ and $m= \pm 1$.

