PHYS 3803: Quantum Mechanics I **Problem Set 2 – Due February 10, 2021**

1). An operator Ω is linear if

 $\Omega(a\phi(x) + b\psi(x)) = a(\Omega\phi(x)) + b(\Omega\psi(x)),$

where $\phi(x)$ and $\psi(x)$ are functions of x while a and b are complex numbers. Determine which of the following operators are linear.

- (a) $\Omega\phi(x) = \phi(-x),$
- (b) $\Omega \phi(x) = \phi(x+c),$
- (c) $\Omega \phi(x) = \phi(x) + c$,
- (d) $\Omega \phi(x) = \int_{-\infty}^{\infty} K(x, y) \phi(y) dy$,

where c = constant and $K(x, y) = K^*(y, x)$.

- 2). Which of the following operators are Hermitian?
 - (a) $\Omega \phi(x) = \phi(x+a),$
 - (b) $\Omega \phi(x) = \phi^*(x),$
 - (c) $\Omega\phi(x) = \phi(-x),$
 - (d) $\Omega \phi(x) = \int_{-\infty}^{\infty} K(x, y) \phi(y) dy$,

where a = constant, K(x, y) is real, and K(x, y) = -K(y, x).

3). If A, B and C are Hermitian Operators, determine if the following combinations are Hermitian:

- (a) A + B,
- (b) $\frac{1}{2i}[A,B],$
- (c) ABC CBA,
- (d) $A^2 + B^2 + C^2$.
- 4). Find B_{α} such that

$$\lim_{\alpha \to \infty} B_{\alpha} e^{-\alpha r} = \delta^3(\vec{r}).$$