PHYS 6213: Advanced Particle Physics Problem Set 2 - due February 24

Problem 1: Photon propagator in the R_{ξ} gauge

In QED, the free field generating functional in the covariant gauge is given as

$$
Z_{0}[J]=\int \mathcal{D} A_{\mu} e^{i S\left[A_{\mu}\right]}=\int \mathcal{D} A_{\mu} e^{i \int d^{4} x\left[\mathcal{L}_{0}+J^{\mu} A_{\mu}\right]}
$$

where J is an external source and

$$
\mathcal{L}_{0}=-\frac{1}{4} F_{\mu \nu} F^{\mu \nu}-\frac{1}{2 \xi}\left(\partial^{\mu} A_{\mu}\right)^{2} .
$$

(a) Show that the action can be rewritten as

$$
S\left[A^{\mu}\right]=\int d^{4} x\left[\frac{1}{2} A_{\mu} K^{\mu \nu} A_{\nu}+J^{\mu} A_{\mu}\right]
$$

with

$$
K^{\mu \nu}=g^{\mu \nu} \square-\left(1-\frac{1}{\xi}\right) \partial^{\mu} \partial^{\nu}
$$

where ξ is an arbitrary gauge fixing parameter.
(b) If we define the Green's function $G^{\mu \nu}$ by

$$
\int d^{4} y K^{\mu \rho}(x-y) G_{\rho \nu}(y-z)=g_{\nu}^{\mu} \delta^{4}(x-z)
$$

with

$$
K^{\mu \nu}(x-y) \equiv \delta^{4}(x-y) K^{\mu \nu}(x),
$$

show that

$$
G^{\mu \nu}(x-y)=\int \frac{d^{4} k}{(2 \pi)^{4}} e^{-i k \cdot(x-y)}\left[-g^{\mu \nu}+(1-\xi) \frac{k^{\mu} k^{\nu}}{k^{2}}\right] \frac{1}{k^{2}} .
$$

N.B. If $\xi=1$ it is the Feynman gauge, while if ξ is chosen to be zero it becomes the Landau gauge.

PROBLEM 2: Interactions of Gauges Bosons with Fermions and Higgs Boson

The covariant derivative of the Standard Model of electroweak interactions is

$$
\mathcal{D}_{\mu}=\partial_{\mu}+i g W_{\mu}^{a} t^{a}+i g^{\prime} B_{\mu} \frac{Y}{2}, \quad a=1,2,3
$$

where t^{a} and $Y / 2$ are generators of $S U(2)_{L} \times U(1)_{Y}, e=g \sin \theta_{W}=g^{\prime} \cos \theta_{W}$, and the charge operator is $Q=t^{3}+Y / 2$.

Let us consider

$$
\mathcal{L}=\bar{Q}_{L} i \gamma^{\mu} D_{\mu} Q_{L}+\bar{u}_{R} i \gamma^{\mu} D_{\mu} u_{R}+\bar{d}_{R} i \gamma^{\mu} D_{\mu} d_{R}+\left(D_{\mu} \Phi\right)^{\dagger}\left(D^{\mu} \Phi\right)
$$

where $a=1,2,3$,

$$
\psi_{L, R}=\frac{1}{2}\left(1 \mp \gamma_{5}\right) \psi,
$$

and
$Q_{L}=\binom{u_{L}}{d_{L}}, \quad\binom{W_{\mu}^{3}}{B_{\mu}}=\left(\begin{array}{rr}\cos \theta_{W} & \sin \theta_{W} \\ -\sin \theta_{W} & \cos \theta_{W}\end{array}\right)\binom{Z_{\mu}}{A_{\mu}}, \quad$ and $\Phi=\binom{0}{\frac{H+v}{\sqrt{2}}}$,
in the unitary gauge with propagator of Z boson to be

$$
\Delta_{F}^{\mu \nu}=\frac{i\left[-g^{\mu \nu}+\left(k^{\mu} k^{\nu} / M_{Z}^{2}\right)\right]}{k^{2}-M_{Z}^{2}+i \epsilon}, \quad \epsilon \rightarrow 0+
$$

(a) Derive the relevant interaction Lagrangian involving W_{μ}^{3} and B_{μ} for $u \bar{u} \rightarrow Z H$ with interactions of $Z u \bar{u}$ and $H Z Z$.
(b) Draw Feynman diagrams and describe Feynman rules for $Z u \bar{u}$ and $H Z Z$.

PROBLEM 3: Matrix Element of $u \bar{u} \rightarrow Z H$
Draw Feynman diagrams and evaluate the matrix element squared $\left.\left.\langle | M\right|^{2}\right\rangle$ for $u\left(p_{1}\right) \bar{u}\left(p_{2}\right) \rightarrow Z\left(p_{3}\right) H\left(p_{4}\right)$, summed over all spins and polarizations as well as averaged over initial spins and colors.

