PHYSICS 6433

Problem Set 2 – Due February 01, 2017

(1). Spin of the Electron

Let us define a generalized Pauli matrix (spin operator)

$$\Sigma_i \equiv \left(\begin{array}{cc} \sigma_i & 0\\ 0 & \sigma_i \end{array}\right) \text{ with } \xi \equiv \left(\begin{array}{cc} 0 & I\\ I & 0 \end{array}\right)$$

such that

$$\alpha_i = \xi \Sigma_i = \Sigma_i \xi \; .$$

Thus we see that ξ commutes with Σ_i ,

$$[\Sigma_i, \Sigma_j] = 2i\epsilon_{ijk}\Sigma_k$$
 and $[\Sigma_i, \beta] = 0$.

In terms of these matrices, we can write down the Dirac Hamiltonian as

$$H = c\vec{\alpha} \cdot \vec{P} + \beta mc^2 + V(r) = c\xi \Sigma_i \cdot P_i + \beta mc^2 + V(r) .$$

Here we have added a spherically symmetric potential to allow for interaction. We know that since the Hamiltonian is invariant under rotations, angular momentum must be conserved.

(a) Show that

$$[L_3, H] = i\hbar c\xi (\Sigma_1 P_2 - \Sigma_2 P_1) \,.$$

(b) Show that

$$[\Sigma_3, H] = 2ic\xi(\Sigma_2 P_1 - \Sigma_1 P_2) .$$

- (c) Find the operator (J_3) for the total angular momentum that commutes with the Hamiltonian as a function of L_3 and Σ_3 .
- (d) Find the spin operator $(\vec{S} = \vec{J} \vec{L})$ and the spin (s) for the electron.

Problems (2) and (3): Dirac Equation in an Electromagnetic Field

The classical interaction of a particle with charge Q can be expressed as

$$U(\vec{x}, \dot{\vec{x}}) = -\frac{Q}{c}\vec{v}\cdot\vec{A} + Q\Phi$$

from a 4-vector potential $A^{\mu} = (\Phi, \vec{A})$ where $\Phi =$ the electric potential and $\vec{A} =$ the magnetic vector potential. We can define a velocity operator $\vec{v} = c\vec{\alpha}$ in quantum mechanics for the Dirac equation. The the Hamiltonian becomes

$$H = c\vec{\alpha} \cdot (\vec{P} - \frac{Q}{c}\vec{A}) + \beta mc^2 + Q\Phi$$

and the Dirac equation becomes

$$[c\vec{\alpha}\cdot(\vec{P}-\frac{Q}{c}\vec{A})+\beta mc^2+Q\Phi]\psi=i\hbar\frac{\partial\psi}{\partial t}$$

In the non-relativistic limit, we have

$$E = E' + mc^2$$
, with $E' \ll mc^2$.

(2). Let us consider the wave function of the form

$$\psi(\vec{x},t) = \psi'(\vec{x},t)e^{-(i/\hbar)mc^2t}$$
 and $\psi' = \begin{pmatrix} \phi \\ \chi \end{pmatrix}$.

Show that

$$i\hbar\frac{\partial\phi}{\partial t} = \left[\frac{1}{2m}\left(\vec{P} - \frac{Q}{c}\vec{A}\right)^2 - \frac{Q}{mc}\vec{S}\cdot\vec{B} + Q\Phi\right]\phi$$

where

$$\vec{S} = \frac{\hbar}{2}\vec{\sigma}$$
 .

Hint: Let's define

$$\vec{\pi} = \vec{P} - \frac{Q}{c}\vec{A}$$

and rewrite the Dirac equation as

$$i\hbar\frac{\partial}{\partial t}\psi' = \left[c\vec{\alpha}\cdot\vec{\pi} + (\beta - I)mc^2 + Q\Phi\right]\psi'$$

with

$$(-2mc^2 + Q\Phi - i\hbar\frac{\partial}{\partial t})\chi \simeq -2mc^2\chi$$
.

- (3). In addition, let us consider an electron in a system with
 - a weak electric field, $|Q\Phi| \ll mc^2$, and
 - a uniform weak magnetic field \vec{B} with $\vec{A} = (1/2)\vec{B} \times \vec{r}$.

Let us choose the Coulomb gauge $\nabla \cdot \vec{A} = 0$.

(a) Apply the tensor notation to show that

$$(\nabla \times \vec{A})_i = B_i$$
.

(b) For a weak magnetic field, terms with \vec{A}^2/c^2 are negligible. Show that the equation of motion for ϕ becomes

$$i\hbar\frac{\partial\phi}{\partial t} = \left[\frac{\vec{P}^2}{2m} + \frac{e}{2mc}\vec{B}\cdot(\vec{L}+2\vec{S}) - e\Phi\right]\phi$$

where Q = -e = charge of the electron, $\vec{S} =$ the spin angular momentum, and $\vec{L} =$ the orbital angular momentum.