PHYSICS 6433

Problem Set 2 - Due February 01, 2017

(1). Spin of the Electron

Let us define a generalized Pauli matrix (spin operator)

$$
\Sigma_{i} \equiv\left(\begin{array}{cc}
\sigma_{i} & 0 \\
0 & \sigma_{i}
\end{array}\right) \text { with } \xi \equiv\left(\begin{array}{cc}
0 & I \\
I & 0
\end{array}\right)
$$

such that

$$
\alpha_{i}=\xi \Sigma_{i}=\Sigma_{i} \xi
$$

Thus we see that ξ commutes with Σ_{i},

$$
\left[\Sigma_{i}, \Sigma_{j}\right]=2 i \epsilon_{i j k} \Sigma_{k} \text { and }\left[\Sigma_{i}, \beta\right]=0
$$

In terms of these matrices, we can write down the Dirac Hamiltonian as

$$
H=c \vec{\alpha} \cdot \vec{P}+\beta m c^{2}+V(r)=c \xi \Sigma_{i} \cdot P_{i}+\beta m c^{2}+V(r) .
$$

Here we have added a spherically symmetric potential to allow for interaction. We know that since the Hamiltonian is invariant under rotations, angular momentum must be conserved.
(a) Show that

$$
\left[L_{3}, H\right]=i \hbar c \xi\left(\Sigma_{1} P_{2}-\Sigma_{2} P_{1}\right)
$$

(b) Show that

$$
\left[\Sigma_{3}, H\right]=2 i c \xi\left(\Sigma_{2} P_{1}-\Sigma_{1} P_{2}\right)
$$

(c) Find the operator $\left(J_{3}\right)$ for the total angular momentum that commutes with the Hamiltonian as a function of L_{3} and Σ_{3}.
(d) Find the spin operator $(\vec{S}=\vec{J}-\vec{L})$ and the spin (s) for the electron.

Problems (2) and (3): Dirac Equation in an Electromagnetic Field

The classical interaction of a particle with charge Q can be expressed as

$$
U(\vec{x}, \dot{\vec{x}})=-\frac{Q}{c} \vec{v} \cdot \vec{A}+Q \Phi
$$

from a 4-vector potential $A^{\mu}=(\Phi, \vec{A})$ where $\Phi=$ the electric potential and $\vec{A}=$ the magnetic vector potential. We can define a velocity operator $\vec{v}=c \vec{\alpha}$ in quantum mechanics for the Dirac equation. The the Hamiltonian becomes

$$
H=c \vec{\alpha} \cdot\left(\vec{P}-\frac{Q}{c} \vec{A}\right)+\beta m c^{2}+Q \Phi
$$

and the Dirac equation becomes

$$
\left[c \vec{\alpha} \cdot\left(\vec{P}-\frac{Q}{c} \vec{A}\right)+\beta m c^{2}+Q \Phi\right] \psi=i \hbar \frac{\partial \psi}{\partial t}
$$

In the non-relativistic limit, we have

$$
E=E^{\prime}+m c^{2}, \text { with } E^{\prime} \ll m c^{2} .
$$

(2). Let us consider the wave function of the form

$$
\psi(\vec{x}, t)=\psi^{\prime}(\vec{x}, t) e^{-(i / \hbar) m c^{2} t} \text { and } \psi^{\prime}=\binom{\phi}{\chi} .
$$

Show that

$$
i \hbar \frac{\partial \phi}{\partial t}=\left[\frac{1}{2 m}\left(\vec{P}-\frac{Q}{c} \vec{A}\right)^{2}-\frac{Q}{m c} \vec{S} \cdot \vec{B}+Q \Phi\right] \phi
$$

where

$$
\vec{S}=\frac{\hbar}{2} \vec{\sigma} .
$$

Hint: Let's define

$$
\vec{\pi}=\vec{P}-\frac{Q}{c} \vec{A}
$$

and rewrite the Dirac equation as

$$
i \hbar \frac{\partial}{\partial t} \psi^{\prime}=\left[c \vec{\alpha} \cdot \vec{\pi}+(\beta-I) m c^{2}+Q \Phi\right] \psi^{\prime}
$$

with

$$
\left(-2 m c^{2}+Q \Phi-i \hbar \frac{\partial}{\partial t}\right) \chi \simeq-2 m c^{2} \chi
$$

(3). In addition, let us consider an electron in a system with

- a weak electric field, $|Q \Phi| \ll m c^{2}$, and
- a uniform weak magnetic field \vec{B} with $\vec{A}=(1 / 2) \vec{B} \times \vec{r}$.

Let us choose the Coulomb gauge $\nabla \cdot \vec{A}=0$.
(a) Apply the tensor notation to show that

$$
(\nabla \times \vec{A})_{i}=B_{i} .
$$

(b) For a weak magnetic field, terms with \vec{A}^{2} / c^{2} are negligible. Show that the equation of motion for ϕ becomes

$$
i \hbar \frac{\partial \phi}{\partial t}=\left[\frac{\vec{P}^{2}}{2 m}+\frac{e}{2 m c} \vec{B} \cdot(\vec{L}+2 \vec{S})-e \Phi\right] \phi
$$

where $Q=-e=$ charge of the electron, $\vec{S}=$ the spin angular momentum, and $\vec{L}=$ the orbital angular momentum.

