PHYS 6433: Quantum Field Theory
 Problem Set 1 - Due January 25, 2017

(1). Simple Harmonic Oscillator

A block of mass m moves on a frictionless surface with a displacement x under the influence of a spring force

$$
F=-k x
$$

where k is the spring constant.
(a) Calculate the potential energy $U(x)$, and find the Lagrangian.
(b) Find the Euler-Lagrange equation.
(c) Find the Hamiltonian.
(d) Find the Hamilton's equations.

(2). Spherically Symmetric System

A particle of mass m moves on a plane under the influence of a central force

$$
\vec{F}=-\frac{\alpha}{r^{2}} \hat{r}, \quad \alpha>0 .
$$

where \hat{r} is the unit vector in the radial direction.
(a) Calculate the potential energy $U(r)$, and find the Lagrangian in terms of polar coordinates r and θ.
(b) Find the Euler-Lagrange equations, then identify the cyclic variables and conserved quantities.
(c) Find the Hamiltonian.
(d) Find the Hamilton's equations.

(3). Hamilton's Principle

The action of a mechanical system with N generalized coordinates is defined as

$$
S\left[q_{i}\right]=\int L\left(q_{i}, \dot{q}_{i}\right) d t
$$

where $i=1, \cdots, N$. The Lagrangian L is defined as

$$
L\left(q_{i}, \dot{q}_{i}\right)=T\left(q_{i}, \dot{q}_{i}\right)-U\left(q_{i}\right)
$$

where $T=$ the kinetic energy and $U=$ the potential energy.
Applying the Hamilton's Principle to show that the Euler-Lagrange equations have the following form

$$
\frac{\partial L}{\partial q_{i}}-\frac{d}{d t}\left(\frac{\partial L}{\partial \dot{q}_{i}}\right)=0
$$

for $i=1, \cdots, N$.

(4). Dirac Matrices

To combine quantum mechanics with special relativity, Dirac suggested a linear relationship between the Hamiltonian (H) and the momentum (\vec{P})

$$
H=c \vec{\alpha} \cdot \vec{P}+\beta m c^{2}
$$

where α_{i} and β are $N \times N$ matrices.
If H is the correct Hamiltonian, by squaring it we should get back the relation from relativity. That is

$$
\begin{aligned}
c^{2} \vec{P}^{2}+m^{2} c^{4} & =H^{2} \\
& =c^{2}\left[\frac{1}{2}\left\{\alpha_{i}, \alpha_{j}\right\} P_{i} P_{j}+\left\{\alpha_{i}, \beta\right\} m c P_{i}+\beta^{2} m^{2} c^{2}\right]
\end{aligned}
$$

Thus it is clear that the left hand side equals the right hand side if

$$
\begin{aligned}
& \beta^{2}=I \\
& \alpha_{i}^{2}=I
\end{aligned}
$$

and

$$
\begin{aligned}
\left\{\alpha_{i}, \beta\right\} & =0 \\
\left\{\alpha_{i}, \alpha_{j}\right\} & =0 \quad \text { for } i \neq j
\end{aligned}
$$

or

$$
\left\{\alpha_{i}, \alpha_{j}\right\}=2 \delta_{i j}
$$

For $N=4$ let us choose β to be diagonal and traceless.

$$
\begin{aligned}
\beta & =\left(\begin{array}{cc}
I & O \\
O & -I
\end{array}\right), \\
I & =\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right), \text { and } \\
O & =\left(\begin{array}{ll}
0 & 0 \\
0 & 0
\end{array}\right) .
\end{aligned}
$$

In addition, let's choose

$$
\alpha_{i}=\left(\begin{array}{cc}
A_{i} & B_{i} \\
C_{i} & D_{i}
\end{array}\right)
$$

where A_{i}, B_{i}, C_{i} and D_{i} are 2×2 matrices.
Apply $\left\{\alpha_{i}, \beta\right\}=0,\left\{\alpha_{i}, \alpha_{j}\right\}=2 \delta_{i j}, \alpha_{i}^{\dagger}=\alpha_{i}$, and show that

$$
\text { (a) } \alpha_{i}=\left(\begin{array}{cc}
0 & B_{i} \\
B_{i}^{\dagger} & 0
\end{array}\right)
$$

and
(b) $B i^{\dagger} B_{j}+B_{j}^{\dagger} B_{i}=0$.

We can choose $B_{i}=\sigma_{i}$ with

$$
\begin{aligned}
\sigma_{i}^{\dagger} & =\sigma_{i}, \text { and } \\
\sigma_{i} \sigma_{j}+\sigma_{j} \sigma_{i} & =2 \delta i j
\end{aligned}
$$

then α_{i} 's become

$$
\alpha_{i}=\left(\begin{array}{cc}
0 & \sigma_{i} \\
\sigma_{i} & 0
\end{array}\right) .
$$

