
PHYS 3803: Quantum Mechanics I, Spring 2021

Lecture 27, May 06, 2021 (Thursday)

• Reading: Spin—Griffiths 4.4

• Final Exam on May 11 (Tuesday) 1:30 pm–3:30 pm.
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Topics for Today: Spin [Griffiths 4.4]

6.6 Comparison with Experiments

6.6 Degeneracy in Hydrogen Atom

6.7 Spin and Addition of Angular Momentum
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6.5 Comparison with Experiments

If an atom is in the state denoted by n, `,m with energy En, it would

remain there forever since that is a stationary state.

• However, if we disturb the system, it may make a transition to

another state n′, `′,m′ with energy E′n 6= En.

• Furthermore, if En′ < En, the atom would emit a photon with

energy En − En′ . The frequency of the emitted photon would be

ωn,n′ =
1

h̄
(En − En′)

and it can be measured in a laboratory.
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Quantum mechanics predicts that

ωn,n′ =
Ry

h̄

(
1

n′2
− 1

n2

)
.

• For a fixed value of n′, we get a family of lines (spectrum) as we

vary n. Thus

ωn,1 =
Ry

h̄

(
1− 1

n2

)
is called the Lyman series.

• Similarly,

ωn,2 =
Ry

h̄

(
1

22
− 1

n2

)
is known as the Balmer series and so on.

These lines are observed and verify quantum mechanical predictions.
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To make the theoretical prediction more precise, we need ’ higher order

’ corrections.

• For example, we have to correct for the fact that the proton is not

immobile, i.e., it does not have infinite mass.

• Furthermore, we have treated the electron like a non-relativistic

particle whereas the relativistic effects are not negligible.

• These are known as fine structure corrections and are calculable.

• However, we must remember that all such corrections are

extremely small and that the non-relativistic Schrödinger equation

describes the Hydrogen atom extremely well.
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6.6 Degeneracy in Hydrogen Atom

The Hydrogen atom possesses rotational symmetry. That implies that

[Li, H] = 0 or

[L±, H] = 0 .

• L± change the m−quantum numbers for a given `.

• Since L± commute with the Hamiltonian, this implies that all the

2`+ 1 states with different m−values have the same energy.

• Thus rotational invariance implies this degeneracy of the

m−quantum numbers.

• In Hydrogen atom, for a given value of n, ` takes integer values

from 0, 1, · · · , n− 1. And furthermore, since the energy levels are

characterized by the n−quantum numbers only, all these states

with different `−quantum numbers also have the same energy.
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Thus for example,

n En ` m

1 −13.6 eV 0 0

2 −13.6/4 eV 0, 1 0; ±1,0

3 −13.6/9 eV 0, 1, 2 0; ±1, 0; ±2, ±1, 0

and so on.

Thus the total number of degeneracy in the case of Hydrogen atom for

a given n is

n−1∑
`=0

(2`+ 1) = 2 · 1

2
(n− 1)n+ n

= n(n− 1 + 1) = n2 .

We have seen similar degeneracy in the case of 3-dimensional harmonic

oscillator and have characterized this as accidental degeneracy.
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6.7 Spin and Addition of Angular Momentum

A. Spin

We have chosen L3 = Lz to share the same eigenvectors with L2.

• The orbital angular momentum, defined as the operator

~L = ~r × ~P = ~X × ~P or Li = εijkXjPk

and studied within the context of the Schrödinger equation, has

only integer eigenvalues in units of h̄

L2|`,m〉 = `(`+ 1)h̄2|`,m〉 and L3|`,m〉 = mh̄|`,m〉 or

L2Y`,m(θ, φ) = `(`+ 1)h̄2Y`,m(θ, φ) and

L3Y`,m(θ, φ) = mh̄Y`,m(θ, φ)

with

` = 0, 1, 2, · · · , −` ≤ m ≤ ` , and Y`,m(θ, φ) ≡ 〈θ, φ|`,m〉 .
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• However, if we treat angular momentum as an abstract operator

satisfying the same commutation relations as the orbital angular

momentum, namely,

[Ji, Jj ] = ih̄εijkJk ,

and study its representations, we find that J2 has eigenvalues

j(j + 1)h̄2 where the quantum number j takes multiples of half

integer values. The eigenvalue equations of J2 and J3 are

J2|`,m〉 = j(j + 1)h̄2|j,m〉〉

J3|`,m〉 = mh̄|j,m〉 .

There has been increasing evidence that half integer angular

momentum must be associated with the electron.
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The experiments to suggest this are as follows

• Anomalous Zeeman effect

• Fine structure

• Stern-Gerlach experiment

The definitive proof for half integer angular momentum comes from the

Stern-Gerlach experiment.

In 1925, Uhlenbeck and Goudsmit introduced the idea that, in addition

to the orbital angular momentum, the electron possesses an intrinsic

spin angular momentum of magnitude s = h̄/2

The total angular momentum of a particle consists of two parts, one

due to its orbital motion and the other due to its spin. Thus we have

~J = ~L+ ~S

where spin ~S is an intrinsic operator, i.e. it does not depend on

coordinates and momenta.
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Therefore ~L and ~S commute and

[Ji, Jj ] = [Li, Lj ] + [Si, Sj ]

or

ih̄εijkJk = ih̄εijkLk + [Si, Sj ] .

That leads to

[Si, Sj ] = ih̄εijkSk .

The eigenvalue equations for spin operators are

S2|s, sz〉 = S2|s,ms〉 = s(s+ 1)h̄2|s,ms〉 and

Sz|s, sz〉 = Sz|s,ms〉 = msh̄|s,ms〉 .

For a spin-1/2 state, there are two basis states (2s+ 1 = 2)

|s,ms〉 : |1
2
,

1

2
〉 and |1

2
,−1

2
〉 with − s ≤ ms ≤ s .
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The eigenvalue equations for the electron with spin s = h̄/2 become

S2|1
2
,ms〉 =

1

2
(
1

2
+ 1)h̄2|1

2
,ms〉 =

3

4
h̄2|1

2
,ms〉

Sz|
1

2
,

1

2
〉 =

1

2
h̄|1

2
,

1

2
〉 , and

Sz|
1

2
,−1

2
〉 = −1

2
h̄|1

2
,

1

2
〉 .

Sometimes, the basis states are also denoted by |+〉 and |−〉
respectively, corresponding to the signature of the z-component of the

spin value:

|+〉 = |1
2
,

1

2
〉 and |−〉 = |1

2
,−1

2
〉 .

These states are orthonormal so that

〈+|+〉 = 〈−|−〉 = 1 ,

〈+|−〉 = 〈−|+〉 = 0 .
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In a two dimensional matrix representation, we can choose,

|+〉 =

 1

0

 and |−〉 =

 0

1

 .

Any vector, in this space, can be defined as a linear combination of

these two basis vector. Thus, we can write

|ψ〉 =
∑
i

ci|i〉 = c+|+〉+ c−|−〉 .

In this basis, the spin operators have the following matrix

representations in this space

Sx =
h̄

2

 0 1

1 0

 , and Sy =
h̄

2

 0 −i
i 0

 .
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In addition, Sz and S2 are diagonal matrices

Sz =
h̄

2

 1 0

0 −1

 , and S2 =
3h̄2

4

 1 0

0 1

 .

We can define the spin operators as

~S =
h̄

2
~σ

where ~σ’s are known as the Pauli matrices.

14



B. Addition of Angular Momentum

Let us consider a system with two particles. Each particle is associated

with an angular momentum operator ~J1 and ~J2 respectively.

The commutation relations of these operators can be written as

[J1i, J1j ] = ih̄εijkJ1k

[J2i, J2j ] = ih̄εijkJ2k

[J1i, J2j ] = 0 .

Applying tensor notations ( ~A× ~B)i = εijkAjBk, we obtain

commutation relations in the compact form

~J1 × ~J1 = ih̄ ~J1

~J2 × ~J2 = ih̄ ~J2[
~J1, ~J2

]
= 0 .
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Let us assume that the values of te angular momenta for these two

particles are j1 and j2 respectively. Thus

J2
i |ji,mi〉 = ji(ji + 1)h̄2|ji,mi〉 and

Jiz|ji,mi〉 = mih̄|ji,mi〉 andi = 1, 2 .

Since ~J1 and ~J2 commute, the total space is a direct product of the two

spaces:

E = E1 ⊗ E2 or

|j1,m1; j2,m2〉 = |j1,m1〉 ⊗ |j2,m2〉 .

The total space must have dimension (2j1 + 1)(2j2 + 1) with

Jz|j1,m1; j2,m2〉 = (J1z + J2z)|j1,m1; j2,m2〉

= J1z|j1,m1〉 ⊗ |j2,m2〉+ |j1,m1〉 ⊗ J2z|j2,m2〉

= (m1 +m2)h̄|j1,m1; j2,m2〉 .
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The total angular momentum operator takes values from j1 + j2 down

to |j1 − j2|, decreasing in steps of unity and we have

E = E(j1) ⊗ E(j2) =

j1+j2∑
j=|j1−j2|

⊕E(j) .

This simply means that the j,m; j1, j2〉 basis defines a reducible space

and operators take block diagonal form in this basis

A system consisting of two angular momentum operators can be

equivalently described in terms of two alternate basis, namely,

|j1,m1; j2,m2〉 or |j,m; j1, j2〉

with −j ≤ m ≤ j.
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Applying completeness relation of |j1,m1; j2,m2〉, we can write

|j,m; j1, j2〉 =
∑

m1,m2

|j1,m1; j2,m2〉〈j1,m1; j2,m2|j,m; j1, j2〉 .

That leads to

|j,m; j1, j2〉 =
∑

m1,m2

〈j1,m1; j2,m2|j,m; j1, j2〉|j1,m1; j2,m2〉

=
∑

m1,m2

C(j, j1, j2;m,m1,m2) |j1,m1; j2,m2〉 .

where

C(j, j1, j2;m,m1,m2) ≡ 〈j1,m1; j2,m2|j,m; j1, j2〉

and they are called the Clebsch-Gordon coefficients.

The orthonormal relations of basis vectors lead to

C(j, j1, j2;m,m1,m2) ≡ 〈j1,m1; j2,m2|j,m; j1, j2〉 = 0

if m 6= m1 +m2 and j1 + j2 ≥ j ≥ |j1 − j2| does not hold.
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Similarly we can apply completeness relation of |j,m; j1, j2〉 and show

that

|j1,m1; j2,m2〉 =
∑
j,m

|j,m; j1, j2〉〈j,m; j1, j2||j1,m1; j2,m2〉 .

That leads to

|j1,m1; j2,m2〉 =
∑
j,m

〈j,m; j1, j2||j1,m1; j2,m2〉 |j,m; j1, j2〉

=
∑
j,m

C∗(j, j1, j2;m,m1,m2) |j,m; j1, j2〉 ,

where

C∗(j, j1, j2;m,m1,m2) = 〈j,m; j1, j2|j1,m1; j2,m2〉 .
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Example:

Let us consider the sum of two angular momenta with eigenvalues 1/2

each and analyze the resulting eigenvalues and eigenstates. In this case

we have

j1 =
1

2
, and j2 =

1

2
,

and, therefore,

m1 =
1

2
,−1

2
, and m2 =

1

2
,−1

2
.

The basis vectors are

|j1,m1〉 : |+〉 = |1
2
,

1

2
〉 , |−〉 = |1

2
,−1

2
〉 ,

|j2,m2〉 : |+〉 = |1
2
,

1

2
〉 , |−〉 = |1

2
,−1

2
〉 .

Note that the total space is the tensor product of |ji,mi〉:

|j1,m1; j2,m2〉 = |j1,m1〉 ⊗ |j2,m2〉
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There are four independent basis states in the total space

|u1〉 = |+,+〉 , |u2〉 = |+,−〉 , |u3〉 = |−,+〉 , |u4〉 = |−,−〉 .

We see that

Jz|+,+〉 = (J1z + J2z)|+,+〉

= (J1z|+〉)⊗ |+〉 + |+〉 (J2z|+〉)

=

(
1

2
+

1

2

)
h̄|+,+〉 = h̄|+,+〉 .

Similarly, we can show that

Jz|+,−〉 = 0 ,

Jz|−,+〉 = 0 ,

Jz|−,−〉 = −h̄|−,−〉 .
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In the product basis, the eigenvalues of Jz or the m quantum numbers

are m = 1, 0,−1, and

Jz →

(+,+)

(+,−)

(−,+)

(−,−)


h̄ 0 0 0

0 0 0 0

0 0 0 0

0 0 0 −h̄

 .
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Furthermore, using the result

J2 = J2
1 + J2

2 + 2J1 · J2
= J2

1 + J2
2 + 2J1zJ2z + J1+J2− + J1−J2+

we can show that in the product basis,

J2 → h̄2


2 0 0 0

0 1 1 0

0 1 1 0

0 0 0 2

 .

We can diagonalize this matrix and show that

|+,+〉
1√
2

(|+,−〉+ |−,+〉)

|−,−〉
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represent the eigenbasis corresponding to j = 1 (triplet), while

|−,−〉

corresponds to the eigenstate j = 0 (singlet).

We can identify

|j = 1,m = 1〉 = |+,+〉

|j = 1,m = 0〉 =
1√
2

(|+,−〉+ |−,+〉)

|j = 1,m = −1〉 = |−,−〉

and

|j = 0,m = 0〉 =
1√
2

(|+,−〉 − |−,+〉) .
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We can identify

|j = 1,m = 1〉 = |+,+〉

|j = 1,m = 0〉 =
1√
2

(|+,−〉+ |−,+〉)

|j = 1,m = −1〉 = |−,−〉

and

|j = 0,m = 0〉 =
1√
2

(|+,−〉 − |−,+〉) .

• The states with j = 1 are known as the triplet states (2j + 1 = 3),

where as the j = 0 state is called the singlet state (2j + 1 = 1).

• The triplet states are symmetric under exchange whereas the

singlet is anti-symmetric.
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The relations between the total momentum basis |j,m; j1, j2〉 and the

product basis |j1,m1; j2,m2〉 can be expressed in the matrix form as
|1, 1〉
|1, 0〉
|1,−1〉
|0, 0〉

 =


1 0 0 0

0 1√
2

1√
2

0

0 0 0 1

0 1√
2
− 1√

2
0

 .


|+,+〉
|+,−〉
|−,+〉
|−,−〉

 .

The elements of the matrix connecting the two sets of basis states are

the Clebsch-Gordon coefficients for this problem.

We can write the composition of the angular momenta as

1

2
⊗ 1

2
= 1⊕ 0

where the numbers represent the quantum number j.
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