PHYS 3803: Quantum Mechanics I, Spring 2021

Lecture 27, May 06, 2021 (Thursday)

e Reading: Spin—Griffiths 4.4
e Final Exam on May 11 (Tuesday) 1:30 pm—3:30 pm.




Topics for Today: Spin [Griffiths 4.4]

6.6 Comparison with Experiments
6.6 Degeneracy in Hydrogen Atom

6.7 Spin and Addition of Angular Momentum




6.5 Comparison with Experiments

If an atom is in the state denoted by n, ¢, m with energy E,,, it would
remain there forever since that is a stationary state.

e However, if we disturb the system, it may make a transition to
another state n’, ¢, m’ with energy E # E,.

e Furthermore, if £, < FE,,, the atom would emit a photon with
energy F,, — F, . The frequency of the emitted photon would be

1
n.n’ — F En_En’
w) h( )

and it can be measured in a laboratory.




Quantum mechanics predicts that

e For a fixed value of n’, we get a family of lines (spectrum) as we

vary n. Thus
Wn,1 =

is called the Lyman series.

e Similarly,

is known as the Balmer series and so on.

These lines are observed and verify quantum mechanical predictions.




To make the theoretical prediction more precise, we need ’ higher order

" corrections.

e For example, we have to correct for the fact that the proton is not

immobile, i.e., it does not have infinite mass.

e Furthermore, we have treated the electron like a non-relativistic

particle whereas the relativistic effects are not negligible.

e These are known as fine structure corrections and are calculable.

e However, we must remember that all such corrections are
extremely small and that the non-relativistic Schrodinger equation
describes the Hydrogen atom extremely well.




6.6 Degeneracy in Hydrogen Atom

The Hydrogen atom possesses rotational symmetry. That implies that

[LZ,H] = 0 or
L., H] = 0.

L4+ change the m—quantum numbers for a given /.

Since L4+ commute with the Hamiltonian, this implies that all the

20 + 1 states with different m—values have the same energy.

Thus rotational invariance implies this degeneracy of the

m—quantum numbers.

In Hydrogen atom, for a given value of n, £ takes integer values
from 0,1,---,n — 1. And furthermore, since the energy levels are
characterized by the n—quantum numbers only, all these states

with different /—quantum numbers also have the same energy.




Thus for example,

E, /
—13.6 eV 0
—13.6/4 eV 0,
—13.6/9 eV 0

0
0; 1.0
, 2 0; x£1,0; £2, £1, 0

1
1

Y

and so on.

Thus the total number of degeneracy in the case of Hydrogen atom for
a given n 1s

1
2-§(n—1)n+n

nn—1+1) = n?.

We have seen similar degeneracy in the case of 3-dimensional harmonic

oscillator and have characterized this as accidental degeneracy.




6.7 Spin and Addition of Angular Momentum
A. Spin

We have chosen L3 = L, to share the same eigenvectors with L?.

e The orbital angular momentum, defined as the operator

—

L:FXﬁ:XXﬁ or LiZGiijij

and studied within the context of the Schrodinger equation, has

only integer eigenvalues in units of h
L2e,m) = (+1D)R*6,m) and Ls|l,m) = mh|l,m)
L*Y; (6, 6) 00 + 1D)A%Y, 0 (0,4) and
LYy (6, 0) mhYe,m(0, ¢)
with

(=0,1,2,---, —4<m</{, and Yin(0,0)=(0,0/{,m).

or




e However, if we treat angular momentum as an abstract operator
satisfying the same commutation relations as the orbital angular

momentum, namely,
i, J;] = iheijnJk

and study its representations, we find that J? has eigenvalues
7(j + 1)h* where the quantum number j takes multiples of half
integer values. The eigenvalue equations of J? and .J3 are

J20,m) i(F + 1)R%[5,m))
J3‘€7m> mh|]7m>

There has been increasing evidence that half integer angular

momentum must be associated with the electron.




The experiments to suggest this are as follows
e Anomalous Zeeman effect
e I'ine structure
e Stern-Gerlach experiment

The definitive proof for half integer angular momentum comes from the

Stern-Gerlach experiment.

In 1925, Uhlenbeck and Goudsmit introduced the idea that, in addition
to the orbital angular momentum, the electron possesses an intrinsic

spin angular momentum of magnitude s = h/2

The total angular momentum of a particle consists of two parts, one
due to its orbital motion and the other due to its spin. Thus we have

J=L+S§

where spin S is an intrinsic operator, i.e. it does not depend on

coordinates and momenta.




Therefore L and S commute and

[Jiv Jj] — [LivLj] + [Sivsj]

’ihéijkjk — ’LhGZ]kLk + [S@, S]] .
That leads to
[SZ', Sj] — ihel-ijk .
The eigenvalue equations for spin operators are

S%s,s,) = S%s,ms) = s(s+ 1)h%|s,ms) and

S.|s,8,) = S.|s,ms) = mgh|s,ms) .

For a spin-1/2 state, there are two basis states (2s + 1 = 2)

11
|S,m8>:|§,§> with —s<myz <s.




The eigenvalue equations for the electron with spin s = i/2 become
1 1,1 1 3.5, 1
2 2 2
= s 3 1)h ~yMlsg) — —h ~o ls
Slyms) = (G + DG, ma) = B m,)
11
22
1 1

1
Zlay o —=h
S:l5:—35) 5!

S|

1.1 1
—h|=,=), and
2 272

1 1
550"

Sometimes, the basis states are also denoted by |+) and |—)
respectively, corresponding to the signature of the z-component of the

spin value:




In a two dimensional matrix representation, we can choose,

1
and

Any vector, in this space, can be defined as a linear combination of

these two basis vector. Thus, we can write

W) = cili) = crl+) +e|-).

i
In this basis, the spin operators have the following matrix
representations in this space




In addition, S, and S? are diagonal matrices

0 h’
, and 5% = S
1 4

We can define the spin operators as
-~ h
S=—-0
2

where &’s are known as the Pauli matrices.




B. Addition of Angular Momentum

Let us consider a system with two particles. Each particle is associated

with an angular momentum operator J1 and Jy respectively.
The commutation relations of these operators can be written as
J1iy J1j iheijrdik

Jai, Joj iheéijkJak

:le'; Jgj: 0.

Applying tensor notations (ff X é)z = €;;k4; By, we obtain

commutation relations in the compact form
Jix 1= ihJy
Jox Jy = ihJy
k| = 0.




Let us assume that the values of te angular momenta for these two

particles are 7; and jo respectively. Thus

J2|j:,ms) = 7:(js + 1)R%|j;,m;)  and
J@Z\]Z,me) = mzh|]z,mz> and? = 1, 2.

Since fl and fg commute, the total space is a direct product of the two

spaces:
E E1® & or
J1.mas g2, me) = |j1,ma) ® |j2, ma) .
The total space must have dimension (2j; 4+ 1)(2j2 + 1) with
JoNj1,mis ga,ma) = (Jiz + J22)|d1, ma; g2, ma)

J12]71,m1) ® g2, me) + |j1,m1) ® Ja2.|j2, m2)

(m1 + mao)h|j1, m1; ja2, ma) .




The total angular momentum operator takes values from j; + jo down

to |j1 — j2|, decreasing in steps of unity and we have
J1t+J2
g =¢£U1) g gliz) — Z AN
J=lj1—J2|
This simply means that the j,m;j1, j2) basis defines a reducible space

and operators take block diagonal form in this basis

A system consisting of two angular momentum operators can be

equivalently described in terms of two alternate basis, namely,

1, mas J2, M) or |j,m; i, j2)

with —3 < m < 3.




Applying completeness relation of |j1,mq; j2, ms), we can write

7, m; g1, J2) = Z 71, m1; g2, me) (91, ma; g2, melj, m; g1, J2) -

my,1meo

That leads to

7, M5 J1, J2) Z (J1,ma; g2, ma|j, m; g1, J2) |1, ma; ja, ma)

mi,Mmo

Z O(j7j17j2;m7m17m2) ‘jlaml;j27m2> .

mi,Mmo

C(J, 71, 25 myma, ma) = (J1, ma; jz, ma|j, m; j1, j2)
and they are called the Clebsch-Gordon coefficients.

The orthonormal relations of basis vectors lead to

C(j7j17j2;m7m17m2) = <j17m1;j27m2|j7m;j1,j2> =0

if m # mq1 4+ mo and j; + j2 > j > |j1 — j2| does not hold.




Similarly we can apply completeness relation of |j, m; j1, j2) and show
that

1. masga ma) = |j.ms gu, da) (G, ms v, dalldi, mas ga, ma)

J,m

That leads to

|j19m1;j27m2> — Z<j7m;j17j2”jlaml;j27m2> ’jam;j17j2>

J,m

— " Oty oy mama, ma) |G, ms i, )

J,m

C*(j7j17j2;m7m17m2) — <j7m;j17j2|j17m1;j27m2> .




Example:

Let us consider the sum of two angular momenta with eigenvalues 1/2
each and analyze the resulting eigenvalues and eigenstates. In this case
we have

and jg =

and, therefore,

The basis vectors are
‘jla m1> :

|j27 m2> .

Note that the total space is the tensor product of |j;,m;):

Ulaml;j2,m2> — |j1,m1> 02y |j2,m2>




There are four independent basis states in the total space
‘u1> — ‘—|—7+>7 "LL2> — ‘+7_>7 |’LL3> — |_>—|—>7 ‘U4> — ‘_7_>'
We see that

Jz’+7+> J12+J2z)‘+7+>

Jiz| ) @ |+) +|+) (J2z]+))

(
(

1 1
—+—=|h = h :

Similarly, we can show that

0,
0,
R, )




In the product basis, the eigenvalues of J, or the m quantum numbers

[ h

are m=1,0,—1, and

0

\ 0




Furthermore, using the result
J? = TP+ Ji4+2J )
= Ji+J5+ 20 de + JipJal + T Joy
we can show that in the product basis,
[ 2 0
0 0

J? 5 h?

0
1
1
0

0
1
1
0

\0 00 2/

We can diagonalize this matrix and show that




represent the eigenbasis corresponding to j = 1 (triplet), while
—, _>
corresponds to the eigenstate j = 0 (singlet).
We can identify
7 =1,m=1)

7 =1,m =0)

j=1,m=—1)




We can identify
7=1,m=1)
j=1,m =0)

j=1,m=—-1)

—0m=0) = () — |
J=0m=0) ===+ =)= I=+)

e The states with j = 1 are known as the triplet states (2j + 1 = 3),
where as the j = 0 state is called the singlet state (27 +1 =1).

e The triplet states are symmetric under exchange whereas the

singlet is anti-symmetric.




The relations between the total momentum basis |j,m; j1, j2) and the

product basis |j1,m1; j2, m2) can be expressed in the matrix form as

(L (1 0 0\ [ [++)

1,0) 0 —5
‘17_1>

\ 10,0) \ojﬁ—io)\ J

The elements of the matrix connecting the two sets of basis states are
the Clebsch-Gordon coeflicients for this problem.

)

0 )

s v 0 )
0 0 | >
-)

We can write the composition of the angular momenta as

1®1—1@0
2792

where the numbers represent the quantum number ;.




