
PHYS 3803: Quantum Mechanics I, Spring 2021

Lecture 26, May 04, 2021 (Tuesday)

• Reading: Hydrogen Atom—Griffiths 4.2

• Final Exam on May 11 (Tuesday) 1:30 pm–3:30 pm.
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Topics for Today: Hydrogen Atom [Griffiths 4.2]

6.2 Radial wave Function

6.3 Fundamental Quantities Associated with Hydrogen Atom

6.4 Numerical Estimates

Next Lecture: Hydrogen Atom [Griffiths 4.2]

6.5 Comparison with Experiments

6.6 Degeneracy in Hydrogen Atom

6.7 Addition of Angular Momentum
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6.2 Hydrogen Atom

Let us define the radial wave function as Rn,`(r) ≡ un,`(r)/r.

The solution of the differential equation for un,` is

un,`(y) = e−
1
2y

n−`−1∑
k=0

aky
k+`+1 = e−

1
2yy`+1w(y) .

The differential equation that w(y) satisfies is

y
d2w

dy2
+ (2`+ 2− y)

dw

dy
+ (n− `− 1)w(y) = 0 .

An equation of the form

y
d2Lq

dy2
+ (1− y)

dLq

dy
+ qLq = 0

is called the Laguerre equation and L′qs are called Laguerre

polynomials of order q.
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The differential equation that w(y) satisfies is

y
d2w

dy2
+ (2`+ 2− y)

dw

dy
+ (n− `− 1)w(y) = 0

The functions Lp
q(y) are related to the Lq’s by the relation

Lp
q(y) =

dp

dyp
Lq(y) , q ≥ p ,

and they are known as the associated Laguerre polynomials. They are

polynomials of order q − p and satisfy the differential equation

y
d2Lp

q

dy2
+ (p+ 1− y)

dLp
q

dy
+ (q − p)Lp

q = 0

Comparing this equation with the one satisfied by the w’s, we see that

w(y) = L2`+1
n+` (y) .
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It is a good approximation to replace the reduced mass µ with me

µ =
mpme

mp +me
' me .

The radial wave function for the Hydrogen atom is

Rn,` = Nn,`e
− 1

2yy`L2`+1
n+` (y) where

y = 2

(
2me|En|

h̄2

)1/2

r =

(
2mee

2

h̄2n

)
r =

2r

na0
with

En = − mee
4

2n2h̄2 and a0 ≡
h̄2

mee2
= Bohr radius .

And the total wave function is

ψn,`,m(r, θ, φ) = Rn,`(r)Y`,m(θ, φ) .

N.B Griffiths chooses the radial wave function as

Rn,` = Nn,`e
− 1

2yy`L2`+1
n−`−1(y) .

5



Let us compare two slightly different conventions for the radial wave

functions of the Hydrogen atom

• the Sakurai conventions (our choice), and

• the Griffiths conventions.

The Laguerre polynomials and the radial wave functions must be the

same in both conventions:

Lq(y) = ey
dq

dyq
(
yqe−y

)
.

In the Sakurai conventions, the associated Laguerre polynomials are

defined as

Lp
q(y) =

dp

dyp
Lq(y) .

Griffiths defines the associated Laguerre polynomials as

Lp
q−p(y) = (−1)p

dp

dyp
Lq(y) .
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Sakurai Conventions

It is convenient to evaluate the Laguerre polynomials with

Lq(y) = ey
dq

dyq
(
yqe−y

)
.

Exercise: Find L0, L1, L2 and L3.

Associated Laguerre polynomials

In the Sakurai conventions, the associated Laguerre polynomials are

defined as

Lp
q(y) =

dp

dyp
Lq(y) .

Exercise: Find L1
1, L

1
2, and L3

3.
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Laguerre polynomials

It is convenient to evaluate the Laguerre polynomials with

Lq(y) = ey
dq

dyq
(
yqe−y

)
.

For example,

L0(y) = ey
d0

dy0

(
y0e−y

)
= 1 ,

L1(y) = ey
d

dy

(
ye−y

)
= −y + 1 ,

L2(y) = ey
d2

dy2

(
y2e−y

)
= y2 − 4y + 2 ,

L3(y) = ey
d3

dy3

(
y3e−y

)
= −y3 + 9y2 − 18y + 6 .
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Associated Laguerre polynomials

In the Sakurai conventions, the radial wave function for the Hydrogen

atom is

Rn,` = Nn,`e
− 1

2yy`L2`+1
n+` (y) .

The associated Laguerre polynomials are defined as

Lp
q(y) =

dp

dyp
Lq(y) with Lq(y) = ey

dq

dyq
(
ype−y

)
.

For example,

L1
1(y) =

d

dy
L1(y) = −1 , n = 1 , ` = 0

L1
2(y) =

d

dy
L2(y) = 2y − 4 , n = 2 , ` = 0

L3
3(y) =

d3

dy3
L3(y) = −6 , n = 2 , ` = 1 .
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The normalization becomes∫
R∗n,`Rn,` r

2 dr =

(
nh̄2

2mee2

)3

|Nn,`|2
∫
y2e−yy2`L2`+1

n+` (y)L2`+1
n+` (y)dy

=

(
nh̄2

2mee2

)3

|Nn,`|2
∫
y2`+2e−yL2`+1

n+` (y)L2`+1
n+` (y)dy

= 1 ,

or (
nh̄2

2mee2

)3

|Nn,`|2(2n)
[(n+ `)!]3

(n− `− 1)!
= 1 .

Choosing N`,m to be real and negative, we obtain

N`,m = N∗`,m = −

[(
2mee

2

nh̄2

)3
(n− `− 1)!

(2n)[(n+ `)!]3

]1/2

.
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In the Sakurai conventions, the normalized radial wave functions are

Rn,` = −

[(
2

na0

)3
(n− `− 1)!

(2n)[(n+ `)!]3

]1/2

× e− 1
2yy`L2`+1

n+` (y) with

y = 2

(
2me|E|
h̄2

)1/2

r =
2r

na0
and En = − mee

4

2n2h̄2 .

The first three radial functions are

R10 = 2

(
mee

2

h̄2

)3/2

e−(mee
2/h̄2)r = 2

(
1

a0

)3/2

e−r/a0 ,

R20 =

(
1

2a0

)3/2(
2− r

a0

)
e−r/(2a0) ,

R21 =

(
1

2a0

)3/2(
r√
3a0

)
e−r/(2a0) , with

a0 =
h̄2

mee2
(Bohr radius).
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Griffiths Conventions

It is convenient to evaluate the Laguerre polynomials with

Lq(x) = ex
dq

dxq
(
xqe−x

)
.

Exercise: Find L0, L1, L2 and L3.

Associated Laguerre polynomials

In the Griffiths conventions, the associated Laguerre polynomials are

defined as

Lp
q−p(x) = (−1)p

dp

dxp
Lq(x) .

Exercise: Find L1
0, L

1
1, and L3

0.
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Laguerre polynomials

It is convenient to evaluate the Laguerre polynomials with

Lq(x) = ex
dq

dxq
(
xqe−x

)
.

For example,

L0(x) = ex
d0

dx0

(
x0e−x

)
= 1 ,

L1(x) = ex
d

dx

(
xe−x

)
= −x+ 1 ,

L2(x) = ex
d2

dx2

(
x2e−x

)
= x2 − 4x+ 2 ,

L3(x) = ex
d3

dx3

(
x3e−x

)
= −x3 + 9x2 − 18x+ 6 .
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Associated Laguerre polynomials

In the Griffiths conventions, the radial wave function for the Hydrogen

atom is

Rn,` = N ′n,`e
− 1

2xx`L2`+1
n−`−1(x) .

The associated Laguerre polynomials are defined as

Lp
q−p(x) = (−1)p

dp

dxp
Lq(x) with Lq(x) = ex

dq

dxq
(
xqe−x

)
.

For example,

L1
0(x) = Lp

q−p(x)(p = 1, q = 1) = (−1)1 d

dx
L1(x) = 1 , n = 1 , ` = 0

L1
1(x) = Lp

q−p(x)(p = 1, q = 2) = (−1)1 d

dx
L2(x) = −2x+ 4 , n = 2 , ` = 0

L3
0(x) = Lp

q−p(x)(p = 3, q = 3) = (−1)3 d
3

dx3
L3(x) = 6 , n = 2 , ` = 1 .
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In the Griffiths conventions, the normalized radial wave functions are

Rn,` =

[(
2

na0

)3
(n− `− 1)!

(2n)[(n+ `)!]3

]1/2

× e− 1
2xx`L2`+1

n−`−1(x) with

x = 2

(
2me|E|
h̄2

)1/2

r =
2r

na0
and En = − mee

4

2n2h̄2 .

The first three radial functions are

R10 = 2

(
mee

2

h̄2

)3/2

e−(mee
2/h̄2)r = 2

(
1

a0

)3/2

e−r/a0 , L2`+1
n−`−1 = L1

0 ,

R20 =

(
1

2a0

)3/2(
2− r

a0

)
e−r/(2a0) with L2`+1

n−`−1=1 = L1
1 ,

R21 =

(
1

2a0

)3/2(
r√
3a0

)
e−r/(2a0) with L2`+1=3

n−`−1=0 = L3
0 .
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6.3 Fundamental Quantities Associated with

Hydrogen Atom

Looking at the wave functions for the Hydrogen atom, we notice that

there is a fundamental length scale that enters the solutions:

a0 =
h̄2

mee2

that is the Bohr radius.

In terms of this quantity, we can write down the radial solutions as

Rn,`(r) ∼ e−r/na0

(
2r

na0

)`

L2`+1
n+`

(
2r

na0

)
Remembering that L2`+1

n+` is a polynomial of order n− `− 1, the most

dominant behavior for large r (r � a0) would be

Rn,`(r) ∼ (r)n−1e−r/na0 .
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Then the probability for finding the electron in a special shell of radius

r and thickness dr∫
Ω

ψ∗ψr2drdΩ ∼ R2
n,`(r)r

2dr

= (r)2ne−2r/na0dr .

We can thus determine the radius of maximum probability as

d

dr

(
(r)2ne−2r/na0

)
= 2nr2n−1e−2r/na0 − 2

na0
(r)2ne−2r/na0

=

(
1

na0

)
(r − n2a0)(r)2n−1e−2r/na0

= 0

or

r∗ = n2a0 .
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Thus we see that the Bohr radius a0 is the most probable value of r in

the ground state and thus defines the natural size of the Hydrogen

atom. We also see that 〈r〉 grows as n2.

This theory also possesses a natural energy scale. Thus we define

Ry =
mee

4

2h̄2 = Rydberg.

The the energy levels for the Hydrogen atom become

En = −Ry

n2
.
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6.4 Numerical Estimates

Let’s make an estimate for the value of a0,

a0 =
h̄2

mee2
=

(h̄c)2

mec2e2
=

h̄c

mec2
h̄c

e2
.

Now we have

h̄c ' 2000 eV · Å
mec

2 ' 0.5 MeV and

α =
e2

h̄c
=

1

137

that is the dimensionless fine structure constant.

Then

a0 =
2000 eV · Å
5× 105 eV

× (137) ' 0.5 Å

where 1 Å= 10−8 cm.
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Furthermore

Ry =
mee

4

2h̄2 =
mec

2e4

2(h̄c)2
=
mec

2

2

(
e2

h̄c

)2

=
5× 105 eV

2
×
(

1

140

)2

' 13 eV .

A more accurate value for the Rydberg is

Ry =
5.11× 105 eV

2
×
(

1

137

)2

' 13.6 eV .

Apply this value, we obtain

En = −Ry

n2
= −13.6

n2
eV .

Thus the ground state which is most tightly bound has an energy

E1 = −13.6 eV and therefore it would take 13.6 eV to release the

electron from its ground state.

This is also known as the binding energy of the Hydrogen atom.
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