
PHYS 3803: Quantum Mechanics I, Spring 2021

Lecture 25, April 29, 2021 (Thursday)

• Reading: Hydrogen Atom—Griffiths 4.2

• Assignments: Problem Set 10 due May 03 (Monday).

Submit your homework assignments to Canvas.
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Topics for Today: Hydrogen Atom [Griffiths 4.2]

6.2 Introduction to the Hydrogen Atom

6.3 Fundamental Quantities Associated with Hydrogen Atom

Next Lecture: Hydrogen Atom [Griffiths 4.2]

6.3 Fundamental Quantities Associated with Hydrogen Atom

6.4 Numerical Estimates
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6.2 Hydrogen Atom

Defining RE,` ≡ uE,`(r)/r, we can write the equation for uE,` as

d2uE,`

dr2
+

2µ

h̄2

[
E +

e2

r
− `(`+ 1)h̄2

2µr2

]
uE,` = 0 .

Let us introduce a dimensionless parameter

y = 2

(
2µ|E|
h̄2

)1/2

r and
d

dr
= 2

(
2µ|E|
h̄2

)1/2
d

dy
.

In terms of the y variables, the equation now becomes

d2uE,`

dy2
+

[
−1

4
+
λ

y
− `(`+ 1)

y2

]
uE,` = 0 ,

where

λ =

(
µ

2h̄2|E|

)1/2

e2 =

(
µe4

2h̄2|E|

)1/2

.
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This suggests a general solution of the form

uE,`(y) = e−
1
2yv(y) = e−

1
2yy`+1

∞∑
k=0

aky
k .

Thus the equation for v becomes

d2v

dy2
− dv

dy
+

[
λ

y
− `(`+ 1)

y2

]
v = 0 .

Applying the power series expansion of v(y)

v(y) =

∞∑
k=0

aky
k+`+1

we obtain

∞∑
k=0

[(
(k + `+ 1)(k + `)− `(`+ 1)

)
aky

k+`−1 − (k + `+ 1− λ)aky
k+`
]

= 0.
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In general the recursion relation would connect ak+1 to ak. Thus

looking at the coefficient of yk+` we have

[(k + 1 + `+ 1)(k + 1 + `)− `(`+ 1)]ak+1 = (k + `+ 1− λ)ak or

ak+1 =
(k + `+ 1− λ)

(k + 1)(k + 2`+ 2)
ak .

Thus for large k

ak+1

ak
→ 1

k
.

Unless the series terminates this would lead to an unphysical solution.

The series terminates if

k + `+ 1− λ = 0 .

That leads to

λ =

(
µe4

2h̄|E|

)1/2

= k + `+ 1 = n and En = − µe4

2n2h̄2 .
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Since both k and ` take positive integer values, n also take positive

integer values. Even when ` and k are both equal to zero, n = 1. Thus

the allowed values for n are

n = 1, 2, 3, · · · ,∞

In addition,

` = n− k − 1 = n− 1, n− 2, · · · , 0

These are the allowed values of the orbital angular momentum for a

given value of n.

Thus the solution of the differential equation is

un,`(y) = e−
1
2y

n−`−1∑
k=0

aky
k+`+1

= e−
1
2yy`+1w(y)
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The differential equation that w(y) satisfies is

y
d2w

dy2
+ (2`+ 2− y)

dw

dy
+ (n− `− 1)w(y) = 0

An equation of the form

y
d2Lq

dy2
+ (1− y)

dLq

dy
+ qLq = 0

is called the Laguerre equation and L′qs are called Laguerre polynomials

of order q. The functions Lp
q(y) are related to the Lq’s by the relation

Lp
q(y) =

dp

dyp
Lq(y) , q ≥ p ,

and they are known as the associated Laguerre polynomials. They are

polynomials of order q − p and satisfy the differential equation

y
d2Lp

q

dy2
+ (p+ 1− y)

dLp
q

dy
+ (q − p)Lp

q = 0
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Comparing this equation with the one satisfied by the w’s, we see that

w(y) = L2`+1
n+` (y) .

The radial wave function for the Hydrogen atom is

Rn,` = Nn,`e
− 1

2yy`L2`+1
n+` (y) where

y = 2

(
2µ|En|
h̄2

)1/2

r =

(
2µe2

h̄2n

)
r .

And the total wave function is

ψn,`,m(r, θ, φ) = Rn,`(r)Y`,m(θ, φ) .

N.B Griffiths chooses the radial wave function as

Rn,` = Nn,`e
− 1

2yy`L2`+1
n−`−1(y) .
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Laguerre polynomials

It is convenient to evaluate the Laguerre polynomials with

Lp(y) = ey
dp

dyp
(
ype−y

)
.

Exercise: Find L0, L1, L2 and L3.

Associated Laguerre polynomials

The associated Laguerre polynomials are defined as

Lq
p(y) =

dq

dyq
Lp(y) .

Exercise: Find L1
1, L

1
2, and L3

3.
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Laguerre polynomials

It is convenient to evaluate the Laguerre polynomials with

Lp(y) = ey
dp

dyp
(
ype−y

)
.

For example,

L0(y) = ey
d0

dy0

(
y0e−y

)
= 1 ,

L1(y) = ey
d

dy

(
ye−y

)
= −y + 1 ,

L2(y) = ey
d2

dy2

(
y2e−y

)
= y2 − 4y + 2 ,

L3(y) = ey
d3

dy3

(
y3e−y

)
= −y3 + 9y2 − 18y + 6 .
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Associated Laguerre polynomials

The radial wave function for the Hydrogen atom is

Rn,` = Nn,`e
− 1

2yy`L2`+1
n+` (y) .

The associated Laguerre polynomials are defined as

Lq
p(y) =

dq

dyq
Lp(y) with Lp(y) = ey

dp

dyp
(
ype−y

)
.

For example,

L1
1(y) =

d

dy
L1(y) = −1 , n = 1 , ` = 0

L1
2(y) =

d

dy
L2(y) = 2y − 4 , n = 2 , ` = 0

L3
3(y) =

d3

dy3
L3(y) = −6 , n = 2 , ` = 1 .
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Generating function for the Laguerre polynomials

The generating function for the Laguerre polynomials is given by

G(y, t) =
e−yt/(1−t)

1− t
=

∞∑
n=0

Ln(y)

n!
tn with t < 1 .

We often apply generating functions

• to derive the special functions, such as

(i) Hermite polynomials for harmonic oscillator,

(ii) Legendre polynomials for angular momentum eigenfunctions,

(iii) Laguerre polynomials for Hydrogen atom,

• to derive the differential equations for special functions, and

• to find the orthonormal relations.

To see that this actually generates Laguerre polynomials we note that

∂G

∂y
= − t

1− t
G or (1− t)∂G

∂y
= −tG .
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Let us consider each side separately:

LHS = (1− t)∂G
∂y

= (1− t)
∞∑

n=0

L′n
n!
tn

=
∞∑

n=0

L′n
n!
tn −

∞∑
n=0

L′n
n!
tn+1

=

∞∑
n=0

L′n
n!
tn −

∞∑
n=1

L′n−1

n− 1!
tn =

∞∑
n=0

L′n
n!
tn −

∞∑
n=0

nL′n−1

n!
tn , and

RHS = −tG = −t
∞∑

n=0

Ln

n!
tn = −

∞∑
n=0

Ln

n!
tn+1

= −
∞∑

n=1

Ln−1

(n− 1)!
tn

= −
∞∑

n=0

nLn

n!
tn .
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That leads to

∞∑
n=0

L′n
n!
tn −

∞∑
n=0

nL′n−1

n!
tn = −

∞∑
n=0

nLn

n!
tn

or

L′n − nL′n−1 = −nLn−1 (I),

L′n+1 − (n+ 1)L′n = −(n+ 1)Ln (II) .

Furthermore,

∂G

∂t
= −y

[
1

1− t
+

t

(1− t)2

]
G+

1

1− t
G

=

[
− y

(1− t)2
+

1

(1− t)

]
G

=

[
(1− y − t)

(1− t)2

]
G .
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That leads to

(1− 2t+ t2)
∂G

∂t
= (1− y − t)G .

Let us consider each side separately

LHS = (1− 2t+ t2)

∞∑
n=1

Ln

(n− 1)!
tn−1

=

∞∑
n=1

[
Ln

(n− 1)!
tn−1 − 2Ln

(n− 1)!
tn +

Ln

(n− 1)!
tn+1

]

=
∞∑

n=0

[
Ln+1

n!
tn − 2nLn

n!
tn +

nLn

n!
tn+1

]
and

RHS = (1− y − t)G = (1− y − t)
∞∑

n=0

Ln

n!
tn

= (1− y)
∞∑

n=0

Ln

n!
tn −

∞∑
n=0

Ln

n!
tn+1 .
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That leads to
∞∑

n=0

[
Ln+1

n!
tn − 2nLn

n!
tn +

nLn

n!
tn+1

]
= (1− y)

∞∑
n=0

Ln

n!
tn −

∞∑
n=0

Ln

n!
tn+1

or
∞∑

n=0

[Ln+1 − 2nLn − (1− y)Ln]
tn

n!

=
∞∑

n=0

− (n+ 1)Ln

n!
tn+1 = −

∞∑
n=1

nLn−1

(n− 1)!
tn = −

∞∑
n=0

n2Ln−1

n!
tn .

Comparing coefficients, we have

Ln+1 = (2n+ 1− y)Ln − n2Ln−1 (III)

Differentiating (III) with respect to y we obtain

L′n+1 = (2n+ 1− y)L′n − Ln − n2L′n−1 or

n2L′n−1 = (2n+ 1− y)L′n − L′n+1 − Ln . (IV)
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Multiplying (I) throughout by n and eliminating n2L′n−1, we have

nL′n + L′n+1 − (2n+ 1− y)L′n + Ln = −n2L′n−1

or

L′n+1 − (n+ 1− y)L′n + Ln = −n2L′n−1

Applying equation (II), we obtain

−(n+ 1)Ln + yL′n + Ln = −n2Ln−1

or

yL′n − nLn = −n2Ln−1 .

Differentiating this with respect to y, we have

yL′′n + L′n − nL′n = −n2L′n−1 or

yL′′n + (1− n)L′n = −n2L′n−1
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We can eliminate n2L′n−1 by (IV)

yL′′n + (1− n)L′n + (2n+ 1− y)L′n − L′n+1 − Ln = 0

Eliminating L′n+1 by (II), we obtain

yL′′n + (1− n)L′n + (n− y)L′n + (n+ 1)Ln − Ln = 0

or

y
d2Ln

dy2
+ (1− y)

dLn

dy
+ nLn = 0 .

Thus we see that the Ln’s satisfy the Laguerre equations.

Generating function for the Associated Laguerre polynomials

The generating function for the associated Laguerre polynomials is

Gp(y, t) =
dp

dyp
G(y, t) = (−1)p

tpe−yt/(1−t)

(1− t)p+1
=
∞∑

n=p

Lp
n(y)

n!
tn .

18



Thus the radial wave function for the Hydrogen atom is

Rn,` = Nn,`e
− 1

2yy`L2`+1
n+` (y)

where

y = 2

(
2µ|En|
h̄2

)1/2

r =

(
2µe2

nh̄2

)
r and

En = − µe4

2n2h̄2 .

And the total wave function is

ψn,`,m(r, θ, φ) = Rn,`(r)Y`,m(θ, φ) .

The normalization constant Nn,` can be obtained from the generating

function for the associated Laguerre polynomials.
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Recall that the total wave function is

ψn,`,m(r, θ, φ) = Rn,`(r)Y`,m(θ, φ) .

There are orthonormal relations for (a) the total wave function (ψ),

(b) the spherical harmonics, and (c) the radial wave function.

The orthonormal relations of the spherical harmonics (Y`,m) demand

that a nonzero contribution comes only if `′ = ` and m′ = m∫
Y ∗`′,m′(θ, φ)Y`,m(θ, φ) dΩ = δ`′`δm′m with dΩ = sin θ dθ dφ

In addition, we have orthonormal relations for the total wave function∫
ψ∗n′,`′,m′ψn,`,m d3r =

∫
ψ∗n′,`′,m′ψn,`,m r2 dr dΩ = δn′nδ`′`δm′m

and the radial wave function∫
R∗n′`′(r)Rn`(r) r

2 dr = δn′nδ`′` .
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Let us look at∫
R∗n,`Rn,` r

2 dr =

(
nh̄2

2µe2

)3

|Nn,`|2
∫
y2e−yy2`L2`+1

n+` (y)L2`+1
n+` (y)dy

=

(
nh̄2

2µe2

)3

|Nn,`|2
∫
y2`+2e−yL2`+1

n+` (y)L2`+1
n+` (y)dy .

We now write the associated Laguerre polynomials in terms of their

generating functions

L2`+1
n+` (y) =

∂n+`

∂tn+`

[
(−1)2`+1 t2`+1

(1− t)2`+2
e−yt/(1−t)

]
t=0

.
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The normalization constant of the radial wave function can be

determined with∫
y2`+2e−yL2`+1

n+` (y)L2`+1
n+` (y)dy

=
∂n+`

∂tn+`

∂n+`

∂xn+`

[
(tx)2`+1

(1− t)2`+2(1− x)2`+2

×
∫

y2`+2e−ye−yt/(1−t)e−yx/(1−x)dy

]
t=x=0

=
∂n+`

∂tn+`

∂n+`

∂xn+`

[
(tx)2`+1

(1− t)2`+2(1− x)2`+2

×
∫

y2`+2e−y(1−tx)/((1−t)(1−x)) dy

]
t=x=0

.
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Changing

y →
[

(1− xt)
(1− t)(1− x)

]−1

z

we obtain

∂n+`

∂tn+`

∂n+`

∂xn+`

[
(tx)2`+1

(1− t)2`+2(1− x)2`+2

× (1− t)2`+3(1− x)2`+3

(1− xt)2`+3

∫
z2`+2e−z dz

]
t=x=0

=
∂n+`

∂tn+`

∂n+`

∂xn+`

[
(tx)2`+1(1− t)(1− x)

(1− xt)2`+3
Γ(2`+ 3)

]
t=x=0

= (2n)
[(n+ `)!]3

(n− `− 1)!
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The normalization becomes∫
R∗n,`Rn,` r

2 dr =

(
nh̄2

2µe2

)3

|Nn,`|2
∫
y2e−yy2`L2`+1

n+` (y)L2`+1
n+` (y)dy

=

(
nh̄2

2µe2

)3

|Nn,`|2
∫
y2`+2e−yL2`+1

n+` (y)L2`+1
n+` (y)dy

= 1 ,

or (
nh̄2

2µe2

)3

|Nn,`|2(2n)
[(n+ `)!]3

(n− `− 1)!
= 1 .

Choosing N`,m to be real and negative, we obtain

N`,m = N∗`,m = −

[(
2µe2

nh̄2

)3
(n− `− 1)!

(2n)[(n+ `)!]3

]1/2

.
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Thus the normalized radial wave functions are

Rn,` = −

[(
2mee

2

nh̄2

)3
(n− `− 1)!

(2n)[(n+ `)!]3

]1/2

× e− 1
2yy`L2`+1

n+` (y) with

y = 2

(
2me|E|
h̄2

)1/2

r =

(
2mee

2

n2h̄2

)
r and En = − mee

4

2n2h̄2 .

The first three radial functions are

R10 = 2

(
mee

2

h̄2

)3/2

e−(mee
2/h̄2)r = 2

(
1

a0

)3/2

e−r/a0 ,

R20 =

(
1

2a0

)3/2(
2− r

a0

)
e−r/(2a0) ,

R21 =

(
1

2a0

)3/2(
r√
3a0

)
e−r/(2a0) with

a0 =
h̄2

mee2
(Bohr radius).
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Radial wave function of the Hydrogen Atom

Figure 1: Hydrogen radial wave function.
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6.3 Fundamental Quantities Associated with

Hydrogen Atom

Looking at the wave functions for the Hydrogen atom, we notice that

there is a fundamental length scale that enters the solutions:

a0 =
h̄2

mee2

that is the Bohr radius.

In terms of this quantity, we can write down the radial solutions as

Rn,`(r) ∼ e−r/na0

(
2r

na0

)`

L2`+1
n+`

(
2r

na0

)
Remembering that L2`+1

n+` is a polynomial of order n− `− 1, the most

dominant behavior for large r (r � a0) would be

Rn,`(r) ∼ (r)n−1e−r/na0 .
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Then the probability for finding the electron in a special shell of radius

r and thickness dr∫
Ω

ψ∗ψr2drdΩ ∼ R2
n,`(r)r

2dr

= (r)2ne−2r/na0dr .

We can thus determine the radius of maximum probability as

d

dr

(
(r)2ne−2r/na0

)
= 2nr2n−1e−2r/na0 − 2

na0
(r)2ne−2r/na0

=

(
1

na0

)
(r − n2a0)(r)2n−1e−2r/na0

= 0

or

r∗ = n2a0 .
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Thus we see that the Bohr radius a0 is the most probable value of r in

the ground state and thus defines the natural size of the Hydrogen

atom. We also see that 〈r〉 grows as n2.

This theory also possesses a natural energy scale. Thus we define

Ry =
mee

4

2h̄2 = Rydberg.

The the energy levels for the Hydrogen atom become

En = −Ry

n2
.
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