PHYS 3803: Quantum Mechanics I, Spring 2021

Lecture 25, April 29, 2021 (Thursday)

e Reading: Hydrogen Atom—Griffiths 4.2

e Assignments: Problem Set 10 due May 03 (Monday).

Submit your homework assignments to Canvas.




Topics for Today: Hydrogen Atom |Griffiths 4.2]

6.2 Introduction to the Hydrogen Atom

6.3 Fundamental Quantities Associated with Hydrogen Atom

Next Lecture: Hydrogen Atom [Griffiths 4.2]

6.3 Fundamental Quantities Associated with Hydrogen Atom

6.4 Numerical Estimates




6.2 Hydrogen Atom

Defining Rg ¢y = ug¢(r)/r, we can write the equation for ug ¢ as
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Let us introduce a dimensionless parameter
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In terms of the y variables, the equation now becomes
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This suggests a general solution of the form
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Thus the equation for v becomes
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Applying the power series expansion of v(y)
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we obtain
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In general the recursion relation would connect ayy; to ar. Thus
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looking at the coefficient of y*™* we have
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Thus for large k
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Unless the series terminates this would lead to an unphysical solution.
The series terminates if

Ek+(+1—-X=0.

That leads to
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Since both k£ and /¢ take positive integer values, n also take positive
integer values. Even when ¢ and k are both equal to zero, n = 1. Thus

the allowed values for n are

n=123,---,00

In addition,
f=n—k—1=n—-1n—-2,---,0
These are the allowed values of the orbital angular momentum for a

given value of n.

Thus the solution of the differential equation is
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The differential equation that w(y) satisfies is
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An equation of the form
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is called the Laguerre equation and L s are called Laguerre polynomials
of order ¢q. The functions LL(y) are related to the L,’s by the relation

Lq(y) = q>p,

and they are known as the associated Laguerre polynomials. They are
polynomials of order ¢ — p and satisfy the differential equation
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Comparing this equation with the one satisfied by the w’s, we see that

w(y) = L2 () -

The radial wave function for the Hydrogen atom is

Ruy = Npee 2y L2 (y)  where
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And the total wave function is
Uno.m (1,0, 0) = Ry o(r)Yem (0, 0) .

N.B Griffiths chooses the radial wave function as

Ry o= Nn,ee_%yy%i“l (y) -




Laguerre polynomials

It is convenient to evaluate the Laguerre polynomials with

dp
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Exercise: Find Ly, L1, Lo and Ls.

Associated Laguerre polynomials
The associated Laguerre polynomials are defined as
A4
L1 —L
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Exercise: Find L1, L, and L3.




Laguerre polynomials

It is convenient to evaluate the Laguerre polynomials with

ydp

Ly(y)=e¢

For example,




Associated Laguerre polynomials

The radial wave function for the Hydrogen atom is

Rn,ﬁ — Nn,ﬁe_Qy EL?»LK_:_El (y)

The associated Laguerre polynomials are defined as

d L
= Do) with Ly(y) = eV

For example,
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Generating function for the Laguerre polynomials

The generating function for the Laguerre polynomials is given by

with ¢t < 1.

We often apply generating functions

e to derive the special functions, such as
(i) Hermite polynomials for harmonic oscillator,

(ii) Legendre polynomials for angular momentum eigenfunctions,

(iii) Laguerre polynomials for Hydrogen atom,

e to derive the differential equations for special functions, and
e to find the orthonormal relations.

To see that this actually generates Laguerre polynomials we note that
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Let us consider each side separately:
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That leads to
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That leads to
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Let us consider each side separately
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That leads to
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Comparing coefficients, we have
Lpi1i=0Cn+1-yL,—n°L,_; (III)
Differentiating (IIT) with respect to y we obtain
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Multiplying (I) throughout by n and eliminating n?L’ we have
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Applying equation (II), we obtain
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Differentiating this with respect to y, we have
yL' + L' —nL, = —n?L | or

yL! +(1—n)L,, = —n°L

n—1




We can eliminate n*L! | by (IV)
yLy, + (1 —=n)Ly, +@2n+1-y)L, — L,y — L, =0
Eliminating L;, ; by (II), we obtain
yL!'+(1—n)L, +(n—y)L, + (n+ 1)L, — L, =0
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+ (1 —y) a0 +nlL, =0.

Thus we see that the L, s satisfy the Laguerre equations.
Generating function for the Associated Laguerre polynomials

The generating function for the associated Laguerre polynomials is
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Thus the radial wave function for the Hydrogen atom is
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And the total wave function is

Un,em(r,0,¢) = R o(r)Yem (0, 9) -
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The normalization constant N, , can be obtained from the generating

function for the associated Laguerre polynomials.




Recall that the total wave function is
Vno.m(1,0,0) = Ry o(r)Yem (0, 0) .

There are orthonormal relations for (a) the total wave function (1),
(b) the spherical harmonics, and (c) the radial wave function.

The orthonormal relations of the spherical harmonics (Y7 ,,) demand

that a nonzero contribution comes only if ¢/ = ¢ and m' =m
/ Yy i (0,0)Yem(0,0) dQ = 640y, with  dS2 = sin 0 df d¢

In addition, we have orthonormal relations for the total wave function
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and the radial wave function
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Let us look at
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We now write the associated Laguerre polynomials in terms of their
generating functions
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The normalization constant of the radial wave function can be
determined with
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Changing
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The normalization becomes
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Thus the normalized radial wave functions are
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The first three radial functions are
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Radial wave function of the Hydrogen Atom

Figure 4.4: Graphs of the first few hydrogen radial wave functions, R, (r).

Figure 1: Hydrogen radial wave function.




6.3 Fundamental Quantities Associated with
Hydrogen Atom

Looking at the wave functions for the Hydrogen atom, we notice that
there is a fundamental length scale that enters the solutions:
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that is the Bohr radius.

In terms of this quantity, we can write down the radial solutions as
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Then the probability for finding the electron in a special shell of radius
r and thickness dr
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We can thus determine the radius of maximum probability as
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Thus we see that the Bohr radius ag is the most probable value of r in
the ground state and thus defines the natural size of the Hydrogen

atom. We also see that (r) grows as n?.

This theory also possesses a natural energy scale. Thus we define

mee?

The the energy levels for the Hydrogen atom become
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