
PHYS 3803: Quantum Mechanics I, Spring 2021

Lecture 24, April 27, 2021 (Tuesday)

• Reading: Hydrogen Atom—Griffiths 4.2

• Assignments: Problem Set 10 due April 30 (Friday).

Submit your homework assignments to Canvas.
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Topics for Today: Hydrogen Atom [Griffiths 4.2]

5.3 Schrödinger equation for spherically symmetric potentials

6.1 Relative Motion of Two Particles

6.2 Introduction to the Hydrogen Atom

Next Lecture: Hydrogen Atom [Griffiths 4.2]

6.3 Fundamental Quantities Associated with Hydrogen Atom

6.4 Numerical Estimates
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5.3 Schrödinger equation for

spherically symmetric potentials

We can write the Laplacian as

∇2 =
1

r2
∂

∂r

(
r2
∂

∂r

)
+

1

r2 sin θ

∂

∂θ

(
sin θ

∂

∂θ

)
+

1

r2 sin2 θ

∂2

∂φ2

=
1

r2
∂

∂r

(
r2
∂

∂r

)
− L2

h̄2r2
.

And the Schrödinger equation for this system becomes

Hψ(r, θ, φ) = Eψ(r, θ, φ) (eigenvalue equation) and[
− h̄2

2m
∇2 + V (r)

]
ψ(r, θ, φ) = Eψ(r, θ, φ){

− h̄2

2m

[
1

r2
∂

∂r

(
r2
∂

∂r

)
− L2

h̄2r2

]
+ V (r)

}
ψ(r, θ, φ) = Eψ(r, θ, φ) .
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Let us now consider a separable solution

ψ(r, θ, φ) = R(r)F (θ, φ) = RE`(r)P`m(θ)Φm(φ) .

Thus we have

d

dr

(
r2
dR

dr

)
+

2mr2

h̄2
[E − V (r)]R(r) = λR(r) and

L2F (θ, φ) = λh̄2F (θ, φ) ,

where λh̄2 = `(`+ 1)h̄2 is the eigenvalue of the operator L2.

The φ−equation now becomes

L2
z

(ih̄)2
Φ =

d2Φ

dφ2
= −αΦ(φ) = −m2Φ(φ)

and the normalized eigenfunction in the φ basis is

Φm(φ) =
1√
2π
eimφ , 0 ≤ φ ≤ 2π , −` ≤ m ≤ `

where mh̄ is the eigenvalue of Lz with the eigenfunction Φm(φ).
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The θ−equation now becomes

sin θ
d

dθ
(sin θ

dΘ

dθ
) +

[
`(`+ 1) sin2 θ −m2

]
Θ = 0 or

(1− x2)
d2Θ

dx2
− 2x

dΘ

dx
+ [`(`+ 1)− m2

1− x2
]Θ`,m = 0 .

The solution now depends on two quantum numbers ` and m with

z(x) = z`,m(x) =
∑

akx
k and x = cos θ .

This is a polynomial of order k = `− |m|, and the θ−solution becomes

Θ`,m = (1− x2)
|m|
2 z`,m(x) = P`,m(x) .

For m = 0, the equation is known as the Legendre equation and the

solutions of the equation are known as the Legendre functions P`(x):

(1− x2)
d2P`
dx2

− 2x
dP`
dx

+ `(`+ 1)P`(x) = 0 .
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The Θ`,m−functions are related to the Legendre functions by

Θ`,m(x) = (1− x2)
|m|
2
d|m|P`(x)

dx|m|
= P`,m(x)

for ` ≥ |m|, and are known as the associated Legendre functions.

The complete angular part of the solution is

F`,m(θ, φ) = Y`,m(θ, φ) ≡ 〈θ, φ|`,m〉 =
N`,m√

2π
P`,m(θ)eimφ

where

• Y`,m’s are called the spherical Harmonics, and

• N`,m’s are normalization constants.
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The normalization constant is determined to be

N`,m = N∗`,m = ±

√
2`+ 1

2

(`− |m|)!
(`+ |m|)!

.

Conventionally we choose the sign to be (−1)m for m > 0 and + for

m ≤ 0. Therefore, the normalized angular solutions are

Y`,m = ε

√
2`+ 1

4π

(`− |m|)!
(`+ |m|)!

P`,m(cos θ)eimφ

where ε = (−1)m for m > 0 and ε = +1 for m ≤ 0.

The complete solution to the Schrödinger equation is

ψE,`,m(r, θ, φ) = R(r)Y`,m(θ, φ) .

The radial part R(r) is determined by the dynamics of the system.
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The equation of the radial part is

d

dr

(
r2
dR

dr

)
+

2µr2

h̄2
[E − V (r)]R(r) = λR(r) = `(`+ 1)R(r)

or

d

dr

(
r2
dR

dr

)
+

2µr2

h̄2

[
E − V (r)− h̄2`(`+ 1)

2µr2

]
R(r) = 0 .

N.B. From now on the mass of a particle will be denoted by µ.

There are several things to note.

• A nonzero angular momentum implies the presence of an additional

potential.

• Furthermore, if we differentiate and calculate the force, we notice it

pushes the particle away from the center of the coordinate system

and lies along the radial direction.

• Thus a nonzero angular momentum gives rise to a centrifugal

barrier that is very strong at short distances.
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Parity

We can now study the question of parity in the 3-dimensional case.

Parity means reflecting a vector through the origin. Thus in spherical

coordinates a vector under the parity transformation is denoted by

Π(r, θ, φ)→ (r, π − θ, π + φ)

where Π = the parity operator. Since the radial part of the vector does

not change under reflection, only the angular part of the solution would

be affected.

ΠY`,m(θ, φ)→ Y`,m(π − θ, π + φ)

Now we have

Πeimφ → eim(π+φ) = (−1)|m|eimφ

Π cos θ → cos(π − θ) = − cos θ = −x
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Thus

P`,m(x) = (1− x2)
|m|
2
d|m|

dx|m|
P`(x)

P`(x) =
1

2``!

d`

dx`
(x2 − 1)`

ΠP`,m(x) ∝ (−1)`+|m|(1− x2)
|m|
2
d`+|m|

dx`+|m|
(x2 − 1)`

∝ (−1)`+|m|P`,m

Then we have

ΠY`,m = (−1)|m|(−1)`+|m|Y`,m(θ, φ) = (−1)`Y`,m(θ, φ).

• The angular eigenfunctions are definite parity eigenstates.

• Their parity is completely determined by the orbital angular

momentum or the `−quantum number.

• All the (2`+ 1) states with different m−quantum numbers have the

same parity given by (−1)`.
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Examples of Spherically Symmetric Potentials:

• The 3-dimensional isotropic oscillator

H =
P 2

2µ
+

1

2
µω2 r2 , r = |~r| .

• The square well potential

V (r) =

{
0 for r > a, and

−V0, for r ≤ a.

for V0 > 0 and |E| < V0.

• The Hydrogen atom

H =
P 2

2µ
− e2

r

where e = the charge of a proton.
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6.1 Relative Motion of Two Particles

Let us consider an isolated system of two interacting particles of masses

m1 and m2 at positions ~r1 and ~r2, and they interact through a potential

that depends on the relative separation between the two particles.

The motion of the system can be split into two parts: a part that

describes the motion of the center of mass and another which describes

the relative motion of the two particles.

Classical System

The Lagrangian is

L =
1

2
m1~̇r

2

1 +
1

2
m2~̇r

2

2 − V (~r1 − ~r2) .

We often define the coordinates

~r ≡ ~r1 − ~r2 and ~R ≡ m1~r1 +m2~r2
(m1 +m2)
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where R is the center of mass of the system, and then

~r1 = ~R+
m2

m1 +m2
~r and ~r2 = ~R− m1

m1 +m2
~r .

Thus the Lagrangian becomes

L =
1

2
m1

(
~̇R+

m2

m1 +m2
~̇r

)2

+
1

2
m2

(
~̇R− m1

m1 +m2
~̇r

)2

− V (~r)

=
1

2
(m1 +m2) ~̇R

2

+
1

2

(
m1m

2
2

(m1 +m2)2
+

m2
1m2

(m1 +m2)2

)
~̇r
2
− V (~r)

=
1

2
(m1 +m2) ~̇R

2

+
1

2

(
m1m2

(m1 +m2)

)
~̇r
2
− V (~r)

=
1

2
M ~̇R

2

+
1

2
µ~̇r

2
− V (~r) .

where

• M = m1 +m2 = the total mass, and

• µ = m1m2/(m1 +m2) = the reduced mass of the system.
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The conjugate momenta corresponding to these new coordinates are

~Q =
∂L

∂ ~R
= M ~̇R = M

(m1~̇r1 +m2~̇r2)

M

= m1~̇r1 +m2~̇r2 = ~p1 + ~p2

which is the sum of the individual momentum, and

~p =
∂L

∂~r
= µ~̇r =

m1m2

m1 +m2
(~̇r1 − ~̇r2)

=
m2~p1 −m1~p2
m1 +m2

Thus the Hamiltonian can be written as

H =
~Q2

2M
+
~p2

2µ
+ V (~r) .

The motion of the system can be described by the motion of two

fictitious particles–one with the total mass and the coordinates of the

center of mass of the system and the other with a reduced mass and
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the relative coordinates. Furthermore, since the variable ~Q is cyclic

~̇Q = 0 .

The total momentum of the system is constant and we can go to the

frame of the center of mass in which case

~Q = 0

and the Hamiltonian becomes

H =
~p2

2µ
+ V (~r) .

Thus we see that the problem of two interacting particles reduces in the

center of mass frame to that of a single particle with a reduced mass

and with the relative coordinates.
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Quantum System

The Hamiltonian is

H =
~p21

2m1
+

~p22
2m2

+ V (~r1 − ~r2)

=
~Q2

2M
+
~p2

2µ
+ V (~r) .

Thus we see that the initial Hamiltonian can be equivalently written as

a sum of two uncoupled terms. Quantum mechanically, we know that

the operators would obey the following commutation relations:

[r1i, p1j ] = ih̄δij

[r2i, p2j ] = ih̄δij

[r1i, r1j ] = 0 , [r2i, r2j ] = 0 ,

[p1i, p1j ] = 0 , [p2i, p2j ] = 0 ,

[r1i, p2j ] = 0 , [r2i, p1j ] = 0 ,

[r1i, r2j ] = 0 , [p1i, p2j ] = 0 .

16



From this we can show that

[Ri, Rj ] = 0 = [ri, rj ] , [Qi, Qj ] = 0 = [qi, qj ] ,

and

[Ri, rj ] = 0 = [Qi, qj ] , [Ri, qj ] = 0 = [ri, Qj ] .

However, we have

[Ri, Qj ] = ih̄δij

[ri, qj ] = ih̄δij .

Thus (~r, ~p) and (~R, ~Q) behave like two pairs of conjugate variables.

Thus in the coordinate basis, we can write

~p = −ih̄~∇ = −ih̄ ∂
∂~r

~Q = −ih̄~∇M = −ih̄ ∂

∂ ~R
.
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Since the two sets (~r, ~p) and (~R, ~Q) commute with each other, the

Hamiltonian can be written as the direct sum of two Hamiltonians:

H = HM +Hr

where HM is the Hamiltonian associated with the motion of the center

of mass and Hr is associated with the relative motion of the two

particles. And since

[HM , Hr] = 0

they can be simultaneously diagonalized. The Hilbert space of the

system becomes a product space of two Hilbert spaces

E = EM ⊗ Er

where (HM , ~R, ~Q) act only on EM and (Hr, ~r, ~p) act only on Er.
A general state of E can be written as

|αM , βr〉 = |αM 〉 ⊗ |βr〉 .
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The situation here is exactly similar to the higher dimensional oscillator

in Cartesian coordinates. Thus a general wave function becomes

〈~r, ~R|ψM , ψr〉 = ψM (~R)ψr(~r) .

The Schödinger equation now splits into two equations

− h̄2

2M
~∇2
MψM (~R) = EMψM (~R) and

[
− h̄

2

2µ
~∇2 + V (~r)

]
ψ(~r) = Erψr(~r)

where Er + EM = E = the total energy of the system.

The first equation is the equation of motion for a free particle and it is

easy to solve

ψM ( ~Q) = e
i
h̄
~Q·~R with EM =

Q2

2M
.

The interesting dynamics is in the other equation for relative motion[
− h̄

2

2µ
~∇2 + V (~r)

]
ψ(~r) = Erψr(~r) .
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6.2 Hydrogen Atom

Here we are consider the motion of an electron in the electromagnetic

potential of a proton inside a nucleus. Thus

m1 = mp = 938 MeV and m2 = me = 0.511 MeV .

The Coulomb potential of the proton is e/r and, therefore, the

potential energy of the system is

V (r) = −e
2

r
.

The Hamiltonian associated with the relative motion is

H = − h̄
2

2µ
∇2 − e2

r
.

We can write the solution as

ψE,`,m(r, θ, φ) = RE,`(r)Y`,m(θ, φ) .
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Defining RE,` ≡ uE,`(r)/r, we can write the equation for uE,` as

d2uE,`
dr2

+
2µ

h̄2

(
E +

e2

r
− h̄2 `(`+ 1)

2µr2

)
uE,` = 0 .

We are interested in the bound state solutions, namely, E < 0. For

E = −|E|, the equation becomes asymptotically

r →∞, d2uE,`
dr2

+
2µE

h̄2
uE,` = 0 , with

lim
r→∞

uE,` → e
−
(

2µ|E|
h̄2

)1/2
r

= e−
1
2y

where we have defined the dimensionless parameter

y = 2

(
2µ|E|
h̄2

)1/2

r and
d

dr
= 2

(
2µ|E|
h̄2

)1/2
d

dy
.
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In terms of the y variables, the equation now becomes

d2uE,`
dy2

+
1

4

(
−1 +

e2

r|E|
− `(`+ 1)h̄2

2µ|E|r2

)
uE,` = 0 ,

or

d2uE,`
dy2

+

(
−1

4
+
λ

y
− `(`+ 1)

y2

)
uE,` = 0 ,

where

λ =

(
µ

2h̄2|E|

)1/2

e2 =

(
µe4

2h̄2|E|

)1/2

.

Near the origin (r → 0 and y → 0) the equation becomes

r → 0,
d2uE,`
dy2

− `(`+ 1)

y2
uE,` = 0 .

and

lim
r→0

uE,`(y)→ y`+1 .
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This suggests a general solution of the form

uE,`(y) = e−
1
2yv(y)

= e−
1
2yy`+1

∞∑
k=0

aky
k = e−

1
2y
∞∑
k=0

aky
k+`+1

and

d2uE,`
dy2

= e−
1
2y

[
1

4
v − v′ + v′′

]
.

Thus the equation for v becomes

e
1
2y

[
v′′ − v′ + 1

4
v +

(
−1

4
+
λ

y
− `(`+ 1)

y2

)
v

]
= 0 or

d2v

dy2
− dv

dy
+

[
λ

y
− `(`+ 1)

y2

]
v = 0 .
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Let us now use the power series solution

v(y) =
∞∑
k=0

aky
k+`+1 ,

dv

dy
=

∞∑
k=0

(k + `+ 1)aky
k+` and

d2v

dy2
=

∞∑
k=0

(k + `+ 1)(k + `)aky
k+`−1

Thus the equation becomes

∞∑
k=0

[
(k + `+ 1)(k + `)aky

k+`−1 − (k + `+ 1)aky
k+` + λaky

k+`

−`(`+ 1)aky
k+`−1

]
= 0 , or

∞∑
k=0

[(
(k + `+ 1)(k + `)− `(`+ 1)

)
aky

k+`−1 − (k + `+ 1− λ)aky
k+`
]

= 0.
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Looking at the lowest power of y, that is y`−1, we see

[`(`+ 1)− `(`+ 1)]a0 = 0

Then we have a0 6= 0 or a0 is arbitrary.

The next coefficient, that is y`, gives

[(`+ 2)(`+ 1)− `(`+ 1)]a1 − (`+ 1− λ)a0 = 0

Then we have a1 6= 0 if a0 6= 0.

In general the recursion relation would connect ak+1 to ak. Thus

looking at the coefficient of yk+` we have

[(k + 1 + `+ 1)(k + 1 + `)− `(`+ 1)]ak+1 = (k + `+ 1− λ)ak

or

ak+1 =
(k + `+ 1− λ)

[(k + 1 + `+ 1)(k + 1 + `)− `(`+ 1)]
ak
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Note that

(k + `+ 2)(k + `+ 1)− `(`+ 1) = k2 + 2`k + 3k + 2`+ 2

= k2 + 2`k + 2k + k + 2`+ 2

= (k + 1)(k + 2`+ 2)

Thus for large k

ak+1

ak
→ 1

k

This is the behavior of the series ey for large higher orders and thus

unless the series terminates this would lead to an unphysical solution.

The series terminates if

k + `+ 1− λ = 0

or

λ =

(
µe4

2h̄|E|

)1/2

= k + `+ 1 = n
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or

|E| =
µe4

2h̄2n2

En = −|En| = − µe4

2h̄2n2
.

Since both k and ` take positive integer values, n also take positive

integer values. Even when ` and k are both equal to zero, n = 1. Thus

the allowed values for n are

n = 1, 2, 3, · · · ,∞

In addition,

` = n− k − 1 = n− 1, n− 2, · · · , 0

These are the allowed values of the orbital angular momentum for a

given value of n.
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