
PHYS 3803: Quantum Mechanics I, Spring 2021

Lecture 23, April 22, 2021 (Thursday)

• Handout: Solutions to Problem Set 9.

• Reading: Angular Momentum: Griffiths 4.1 and 4.3

• Assignments: Problem Set 10 due April 30 (Friday).

Submit your homework assignments to Canvas.
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Topics for Today: Angular Momentum [Griffiths 4.3]

5.3 Schrödinger equation for spherically symmetric potentials

Next Lecture: Hydrogen Atom [Griffiths 4.2]

6.1 Relative Motion of Two Particles

6.2 Introduction to the Hydrogen Atom
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5.2 Rotations and Angular Momentum

The θ equation is

d

dθ
Θ`,`(θ)− ` cot θΘ`,`(θ) = 0 .

That has the solution

Θ`,`(θ) = A(sin θ)` , and U`,`(r, θ, φ) = R`,`(r)(sin θ)
`ei`φ .

Note that rotation only affects the angular parts.

• The radial component should not depend on any angular

momentum quantum numbers.

• It should be the same for all wave functions of different angular

momentum quantum numbers and is determined by the dynamics

of the system.
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Thus

U`,`(r, θ, φ) = R`,`(r)(sin θ)
`ei`φ .

Any other wave function can be obtained from this by using the

lowering operator. Thus

|`, `− 1〉 =
1

[`(`+ 1)− `(`− 1)]1/2h̄
L−|`, `〉 =

1√
2` h̄

L−|`, `〉

U`,`−1(r, θ, φ) =
1√
2` h̄

(−1)h̄e−iφ(
∂

∂θ
− i cot θ

∂

∂φ
)U`,`(r, θ, φ)

= − 2√
2` h̄

e−iφ · ∂
∂θ
U`,`(r, θ, φ)

where we have used

(
∂

∂θ
+ i cot θ

∂

∂φ
)U`,`(r, θ, φ) = 0 , or

+i cot θ
∂

∂φ
U`,`(r, θ, φ) = − ∂

∂θ
U`,`(r, θ, φ) .
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Thus

U`,`−1(r, θ, φ) =
(−1)√

2`
· 2e−iφR(r)ei`φ

d

dθ
(sin θ)`

=
(−1)√

2`
· 2R(r)ei(`−1)φ · `(sin θ)`−1 cos θ

= −
√

2`R(r)ei(`−1)φ(sin θ)`−1 cos θ .

A general wave function U`,m(r, θ, φ) can be obtained by applying the

lowering operator `−m times with suitable normalization.

The interesting conclusions of this operator method is that the angular

momentum operator L2 has eigenvalues of the form

(i) L2|`,m〉 = `(`+ 1)h̄2|`,m〉.

(ii) ` takes integer as well as half integral values.
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This is certainly a triumph of quantum mechanics.

For the energy associated with rotation, the Hamiltonian is denoted by

H =
L2

2I

with the eigenvalue

H|`,m〉 = Eθ|`,m〉

where I is the moment of inertia of the system.

In the old quantum theory, someone suggested the eigenvalues of L2 as

L2|`,m〉 = `2h̄2|`,m〉 and Eθ =
`2h̄2

2I
with ` = 0, 1, 2, · · · .

That leads to the separation of energy levels in molecules in the

proportions

∆E10 : ∆E21 : ∆E32 : ∆E43 : · · · = 1 : 3 : 5 : 7 : · · ·

However, this was not observed.
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The correct quantum mechanics predicts

L2|`,m〉 = `(`+ 1)h̄2|`,m〉 with ` = 0, 1, 2, · · · .

The observed energy separations were in the proportions

∆E10 : ∆E21 : ∆E32 : ∆E43 : · · · = 1 : 2 : 3 : 4 : · · · = 2 : 4 : 6 : 8 : · · · .

That confirms the correct quantum theory with

L2|`,m〉 = `(`+ 1)h̄2|`,m〉 and Eθ =
`(`+ 1)h̄2

2I
with ` = 0, 1, 2, · · · .

• The angular momentum eigenvalues take integral values and the

extra term arise from the noncommutativity of different

components of the angular momentum operators.

• If we solve Schrödinger equations, we would only obtain integral

values for angular momentum eigenvalue.

• The operator method, on the other hand, allows half integral

eigenvalues as well.
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5.3 Schrödinger equation for

spherically symmetric potentials

Spherical symmetry ↔ Rotational invariance ↔ Conservation of

angular momentum

In spherical coordinates,

(i) the gradient operator is

∇ = r̂
∂

∂r
+ θ̂

1

r

∂

∂θ
+ φ̂

1

r sin θ

∂

∂φ
.

(ii) the Laplacian is

∇2 =
1

r2
∂

∂r

(
r2
∂

∂r

)
+

1

r2 sin θ

∂

∂θ

(
sin θ

∂

∂θ

)
+

1

r2 sin2 θ

∂2

∂φ2
.
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(iii) the angular momentum operators are

Lx = ih̄

(
sinφ

∂

∂θ
+ cot θ cosφ

∂

∂φ

)
Ly = ih̄

(
− cosφ

∂

∂θ
+ cot θ sinφ

∂

∂φ

)
Lz = −ih̄ ∂

∂φ
.

Then

L2
x = (ih̄)2 (sin2 φ

∂2

∂θ2
− csc2 θ sinφ cosφ

∂

∂φ
+ cot θ sinφ cosφ

∂2

∂θ∂φ

+ cot θ cos2 φ
∂

∂θ
+ cot θ sinφ cosφ

∂2

∂θ∂φ

− cot θ2 sinφ cosφ
∂

∂φ
+ cot θ2 cos2 φ

∂

∂φ
)
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L2
y = (ih̄)2 (cos2 φ

∂2

∂θ2
+ csc2 θ sinφ cosφ

∂

∂φ
− cot θ sinφ cosφ

∂2

∂θ∂φ

+ cot θ sin2 φ
∂

∂θ
− cot θ sinφ cosφ

∂2

∂θ∂φ

+ cot θ2 sinφ cosφ
∂

∂φ
+ cot2 θ sin2 φ

∂

∂φ
)

L2
z = (−ih̄)2

∂2

∂φ2
and

L2 = L2
x + L2

y + L2
z

= (ih̄)2(
∂2

∂θ2
+ cot θ

∂

∂θ
+ csc2 θ

∂2

∂φ2
)

= (ih̄)2
[

1

sin θ

∂

∂θ
(sin θ

∂

∂θ
) +

1

sin2 θ

∂2

∂φ2

]
= −h̄2

[
1

sin θ

∂

∂θ
(sin θ

∂

∂θ
) +

1

sin2 θ

∂2

∂φ2

]
.
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Thus we can write the Laplacian as

∇2 =
1

r2
∂

∂r

(
r2
∂

∂r

)
+

1

r2
L2

(ih̄)2

=
1

r2
∂

∂r

(
r2
∂

∂r

)
− L2

h̄2r2

And the Schrödinger equation for this system becomes

Hψ(r, θ, φ) = Eψ(r, θ, φ)

[− h̄2

2m
∇2 + V (r)]ψ(r, θ, φ) = Eψ(r, θ, φ)

{− h̄2

2m
[

1

r2
∂

∂r
(r2

∂

∂r
)− L2

h̄2r2
] + V (r)}ψ(r, θ, φ) = Eψ(r, θ, φ)

Let us now use a separable solution

ψ(r, θ, φ) = R(r)F (θ, φ)
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The equation now becomes

F (θ, φ){− h̄2

2m
[

1

r2
d

dr
(r2

d

dr
)R(r) + [V (r)− E]R(r)} = −R(r)

L2

2mr2
F (θ, φ)

or

1

R(r)
{ d
dr

(r2
d

dr
)R(r) +

2mr2

h̄2
[E − V (r)]R(r)} =

1

F (θ, φ)

L2

h̄2
F (θ, φ) = λ

Thus we have

d

dr
(r2

dR

dr
) +

2mr2

h̄2
[E − V (r)]R(r) = λR(r)

and

L2F (θ, φ) = h̄2λF (θ, φ)

This shows that h̄2λ is the eigenvalue of the operator L2 with the

eigenfunction F (θ, φ). Furthermore, the solution of the radial equation

depends on the form of the potential.
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Let’s consider the angular part,

L2F (θ, φ) = h̄2λF (θ, φ)

or

−
[

1

sin θ

∂

∂θ
(sin θ

∂

∂θ
) +

1

sin2 θ

∂2

∂φ2

]
F (θ, φ) = λF (θ, φ) .

Let us further separate variables with

F (θ, φ) = Θ(θ)Φ(φ).

Then the equation becomes

Φ(φ)

[
1

sin θ

d

dθ
(sin θ

dΘ

dθ
) + λΘ

]
= − Θ(θ)

sin2 θ

d2Φ

dφ2

or

1

Θ(θ)

[
sin θ

d

dθ
(sin θ

dΘ

dθ
) + λ sin2 θ

]
Θ = − 1

Φ(φ)

d2Φ

dφ2
= α.
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Thus we have

sin θ
d

dθ
(sin θ

dΘ

dθ
) + λ sin2 θΘ = αΘ

and

L2
z

(ih̄)2
Φ =

d2Φ

dφ2
= −αΦ(φ).

The φ−equation

The φ−equation now becomes

L2
z

(ih̄)2
Φ =

d2Φ

dφ2
= −αΦ(φ)

and the solution is

Φ(φ) = Aei
√
αφ +Be−i

√
αφ .
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Since the wave function has to be single valued and continuous,

we expect

α = m2

where m = 0,±1,±2, · · · = integers.

Thus the normalized eigenfunction in the φ basis is

Φm(φ) =
1√
2π
eimφ, 0 ≤ φ ≤ 2π.

It is also clear that mh̄ is the eigenvalue of Lz with the eigenfunction

Φm(φ). The integer nature of m arises because we want

Φm(φ) = Φm(φ+ 2π).
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The θ−equation

The θ−equation now becomes

sin θ
d

dθ
(sin θ

dΘ

dθ
) + λ sin2 θΘ = m2Θ

or

sin θ
d

dθ
(sin θ

dΘ

dθ
) + (λ sin2 θ −m2)Θ = 0.

Let x = cos θ, then

d

dθ
=
dx

dθ

d

dx
= − sin θ

d

dx
= −(1− x2)1/2

d

dx
.

The θ−equation becomes

(1− x2)
d

dx
[(1− x2)

dΘ

dx
] + [λ(1− x2)−m2]Θ = 0 .
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That leads to

(1− x2)
d2Θ

dx2
− 2x

dΘ

dx
+

[
λ− m2

(1− x2)

]
Θ = 0 .

We expect the solution of the following form

Θ(x) = (1− x2)
|m|
2

∞∑
k=0

akx
k = (1− x2)

|m|
2 z(x) with z(x) =

∞∑
k=0

akx
k .

Putting this back into the equation, we obtain

(1− x2)

[
(1− x2)

|m|
2
d2z

dx2
− 2|m|x(1− x2)

|m|
2 −1

dz

dx

+
(
−|m|(1− x2)

|m|
2 −1 + |m|(|m| − 2)x2(1− x2)

|m|
2 −2

)
z

]
−2x

[
(1− x2)

|m|
2
dz

dx
− |m|x(1− x2)

|m|
2 −1z

]
+

[
λ− m2

(1− x2)

]
(1− x2)

|m|
2 z(x) = 0 .
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That leads to[
(1− x2)

d2z

dx2
− 2(|m|+ 1)x

dz

dx
+ (λ− |m|)z

]
(1− x2)

|m|
2

+(1− x2)
|m|
2 −1

[
+2|m|( |m|

2
− 1)x2 + 2|m|x2 −m2

]
z = 0

or

(1− x2)
d2z

dx2
− 2(|m|+ 1)x

dz

dx
+
[
λ− |m|(|m|+ 1)

]
z = 0 .

Applying the power series solution for z, we obtain

(1− x2)

∞∑
k=2

k(k − 1)akx
k−2 − 2(|m|+ 1)x

∞∑
k=1

kakx
k−1

+
[
λ− |m|(|m|+ 1)

] ∞∑
k=0

akx
k = 0 with z(x) =

∞∑
k=0

akx
k .
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That leads to

∞∑
k=2

k(k − 1)akx
k−2 −

∞∑
k=2

k(k − 1)akx
k − 2(|m|+ 1)

∞∑
k=1

kakx
k

+[λ− |m|(|m|+ 1)]
∞∑
k=0

akx
k = 0 , or

∞∑
k=0

(k + 2)(k + 1)ak+2x
k −

∞∑
k=0

k(k − 1)akx
k − 2(|m|+ 1)

∞∑
k=0

kakx
k

+[λ− |m|(|m|+ 1)]
∞∑
k=0

akx
k = 0 , or

∞∑
k=0

xk
[
(k + 2)(k + 1)ak+2

−
(
k(k − 1) + 2k(|m|+ 1) + |m|(|m|+ 1)− λ

)
ak

]
= 0 .
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Then we have

ak+2 =
1

(k + 2)(k + 1)

[
k2 + k(2|m|+ 1) + |m|(|m|+ 1)− λ

]
ak

=
1

(k + 2)(k + 1)

[
(k + |m|)(k + |m|+ 1)− λ

]
ak .

This defines the recursion relation for the power series solution.

Clearly for large k

ak+2 ' ak and z(x) ∼ 1

1− x2
= 1 + x2 + x4 +O(x6) .

This would imply that the solution blows up for some value of m.

For a physical solution to exist, the series must terminate and we have

(k + |m|)(k + |m|+ 1)− λ = 0 , or

λ = `(`+ 1) , where ` = k + |m| .

Since both k and m are integers, ` also takes integral values.
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Furthermore, k and |m| are both positive, then

` = 0, 1, 2, 3, · · ·

and for each `, the integer m takes 2`+ 1 values

−` ≤ m ≤ `

Thus the eigenvalues of L2 are

λh̄2 = `(`+ 1)h̄2

where ` = 0, 1, 2, 3, · · · and the eigenvalues of Lz are

mh̄

where m is an integer and −` ≤ m ≤ `.

• The recursion relation of ak implies that if k = `− |m| is even the

solution contains only even powers of x. However, if k is odd then

only the odd terms in the series survive.

• This is similar to the harmonic oscillator solutions.
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The solution now depends on two quantum numbers ` and m and is

denoted by

z(x) = z`,m(x)

x = cos θ.

This is a polynomial of order k = `− |m|, and the θ−solution

Θ`,m = (1− x2)
|m|
2 z`,m(x)

satisfies the equation

(1− x2)
d2Θ

dx2
− 2x

dΘ

dx
+ [`(`+ 1)− m2

1− x2
]Θ`,m = 0.

For m = 0, the equation is known as the Legendre equation and the

solutions of the equation are known as the Legendre functions P`(x):

(1− x2)
d2P`
dx2

− 2x
dP`
dx

+ `(`+ 1)P`(x) = 0.

The Legendre functions (P`) are polynomials of order `.
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The Θ`,m−functions are related to the Legendre functions by

Θ`,m(x) = (1− x2)
|m|
2
d|m|P`(x)

dx|m|
= P`,m(x)

for ` ≥ |m|, and are known as the associated Legendre functions.

The complete angular part of the solution is

F`,m(θ, φ) = Y`,m(θ, φ) =
N`,m√

2π
P`,m(θ)eimφ

here

• N`,m’s are normalization constants, and

• Y`,m’s are called the spherical Harmonics.
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The orthonormal relations for the spherical harmonics can be derived

from the orthonormal relations of the eigenvectors of L2 and L3:

〈`′,m′|`,m〉 = δ`′`δm′m with Y`,m(θ, φ) ≡ 〈θ, φ|`,m〉

and the completeness relation∫
|θ, φ〉〈θ, φ| dΩ =

∫
|θ, φ〉〈θ, φ| sin θdθ dφ = I .

That leads to

〈`′,m′|`,m〉 =

∫
〈`′,m′|θ, φ〉〈θ, φ|`,m〉dΩ = δ`′`δm′m

=

∫
Y ∗`′,m′(θ, φ)Y`,m(θ, φ) sin θdθdφ

=
N∗`′,m′N`,m

2π

∫
P`′,m′P`,me

−i(m′−m)φd(cos θ)dφ .

This integral vanishes unless the m quantum numbers are equal.

In addition, the integral vanishes unless `′ = `.
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To see this let us remember that P`,m satisfies the equation

(1− x2)
d2P`,m
dx2

− 2x
dP`,m
dx

+
[
`(`+ 1)− m2

1− x2
]
P`,m = 0

or

d

dx

[
(1− x2)

dP`,m
dx

]
+

[
`(`+ 1)− m2

1− x2

]
P`,m = 0

where P`,m = Θ(`,m).

We can show that∫
[P`,m(x)]2 dx =

2

2`+ 1

(`+ |m|)!
(`− |m|)!

with x = cos θ .

Thus our normalization condition now becomes∫
Y ∗`,mY`,m sin θdθdφ = |N`,m|2

∫
dx[P`,m]2dx

= |N`,m|2
2

2`+ 1

(`+ |m|)!
(`− |m|)!

= 1
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Thus the normalization constant is determined to be

N`,m = N∗`,m = ±

√
2`+ 1

2

(`− |m|)!
(`+ |m|)!

.

Conventionally we choose the sign to be (−1)m for m > 0 and + for

m ≤ 0. Therefore, the normalized angular solutions are

Y`,m = ε

√
2`+ 1

4π

(`− |m|)!
(`+ |m|)!

P`,m(cos θ)eimφ

where ε = (−1)m for m > 0 and ε = +1 for m ≤ 0.

The complete solution to the Schrödinger equation is

ψE,`,m(r, θ, φ) = R(r)Y`,m(θ, φ) .

The radial part R(r) is determined by the dynamics of the system.
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