PHYS 3803: Quantum Mechanics I, Spring 2021

Lecture 23, April 22, 2021 (Thursday)

e Handout: Solutions to Problem Set 9.
e Reading: Angular Momentum: Griffiths 4.1 and 4.3

e Assignments: Problem Set 10 due April 30 (Friday).

Submit your homework assignments to Canvas.




Topics for Today: Angular Momentum |Griffiths 4.3]

5.3 Schrodinger equation for spherically symmetric potentials

Next Lecture: Hydrogen Atom [Griffiths 4.2]
6.1 Relative Motion of Two Particles

6.2 Introduction to the Hydrogen Atom




5.2 Rotations and Angular Momentum

The 6 equation is

d;de@&g(e) — f cot 9@g,g(9> =0.

That has the solution

Oue(0) = A(sin0)*, and Upe(r,0,¢) = Ree(r)(sinf) e’

Note that rotation only affects the angular parts.

e The radial component should not depend on any angular

momentum quantum numbers.

e It should be the same for all wave functions of different angular
momentum quantum numbers and is determined by the dynamics

of the system.




Ug)g(?“, 9, qb) = Rg’g(T> (Sin 9)£6M¢ .

Any other wave function can be obtained from this by using the

lowering operator. Thus
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A general wave function Uy, (r, 0, ¢) can be obtained by applying the

lowering operator £ — m times with suitable normalization.

The interesting conclusions of this operator method is that the angular

momentum operator L? has eigenvalues of the form
(1) L3[4, m) = £(¢ + DR*|¢,m).

(ii) ¢ takes integer as well as half integral values.




This is certainly a triumph of quantum mechanics.

For the energy associated with rotation, the Hamiltonian is denoted by

H=—
21

with the eigenvalue
H|l,m) = Eg|l,m)

where [ is the moment of inertia of the system.
In the old quantum theory, someone suggested the eigenvalues of L? as
s
21

That leads to the separation of energy levels in molecules in the

L3¢, m) = ?h*|¢,m) and FEjy=

with £=0,1,2,--- .

proportions
AF19:AFEy : AFE39 : AFy3:---=1:3:5:7:---

However, this was not observed.




The correct quantum mechanics predicts
L0, m) =00 + DB, m) with £=0,1,2,---.
The observed energy separations were in the proportions
AF10: AFEo :AE3 : AEy3:---=1:2:3:4:---=2:4:6:8:---.

That confirms the correct quantum theory with

00+ 1R
21

e The angular momentum eigenvalues take integral values and the

L2|6,m) = (¢ + D)R*|¢,m) and FEjy=

extra term arise from the noncommutativity of different
components of the angular momentum operators.

e If we solve Schrodinger equations, we would only obtain integral

values for angular momentum eigenvalue.

e The operator method, on the other hand, allows half integral

eigenvalues as well.

with £=0,1,2,---



5.3 Schrodinger equation for
spherically symmetric potentials

Spherical symmetry <+ Rotational invariance <> Conservation of

angular momentum

In spherical coordinates,

i) the gradient operator is
g
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(iii) the angular momentum operators are
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Thus we can write the Laplacian as
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And the Schrodinger equation for this system becomes
Hy(r,0,¢) = Ey(r,0,0)
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Let us now use a separable solution

w(rv 0, gb) — R(T)F(Qa ¢)



The equation now becomes

h2[1 d(
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Thus we have

d

L*F(0,¢) = h*AF(6, ¢)

This shows that )\ is the eigenvalue of the operator L? with the
eigenfunction F'(0, ¢). Furthermore, the solution of the radial equation

depends on the form of the potential.




Let’s consider the angular part,

L*F(0,¢) = h*AF(0, ¢)
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Let us further separate variables with

F(0,6) = ©(0)®(6).
Then the equation becomes
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Thus we have
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The ¢—equation

The ¢p—equation now becomes

P
et = ag = )

and the solution is

B(¢p) = A’V 4 Be VP




Since the wave function has to be single valued and continuous,

we expect
a=m

where m = 0, £1, £2, - - - = integers.
Thus the normalized eigenfunction in the ¢ basis is
1

It is also clear that mh is the eigenvalue of L, with the eigenfunction

®,,(¢). The integer nature of m arises because we want

D (9) = Pr (¢ + 2m).




The 6—equation

The 6—equation now becomes
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The 6—equation becomes
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That leads to
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We expect the solution of the following form
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Putting this back into the equation, we obtain
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That leads to
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Applying the power series solution for z, we obtain
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That leads to
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Then we have
1

(k+2)(k+1)
1

(k+2)(k+ 1)

This defines the recursion relation for the power series solution.

Gk io K2+ (2lm] + 1) + m|(jm] + 1) = A|ay

(e ) + ] + 1) — A .

Clearly for large k

ag+o >~ ar and  z(x) ~ =1+2°+2* +0(2Y).

1 — 22
This would imply that the solution blows up for some value of m.

For a physical solution to exist, the series must terminate and we have

(k+[m])(k +[m[+1) =A =0, or
A=/{(l+1), where ¢=Fk+ |m|.

Since both £ and m are integers, ¢ also takes integral values.




Furthermore, k£ and |m/| are both positive, then
(=0,1,2,3,
and for each /¢, the integer m takes 2/ 4+ 1 values

L <m</

Thus the eigenvalues of L? are

AB? = 0(0 + 1)R?

where £ = 0,1,2,3,--- and the eigenvalues of L, are
mh

where m is an integer and —¢ < m < /.

e The recursion relation of a; implies that if k = ¢ — |m| is even the
solution contains only even powers of . However, if k is odd then
only the odd terms in the series survive.

e This is similar to the harmonic oscillator solutions.




The solution now depends on two quantum numbers ¢ and m and is
denoted by

z(x) 20.m ()

€T cos 6.

This is a polynomial of order k = ¢ — |m|, and the §—solution

satisfies the equation

d*0 do
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For m = 0, the equation is known as the Legendre equation and the

solutions of the equation are known as the Legendre functions Py(x):

d>P dP
(1—2?) dxj - Zxd—; + 00+ 1)Py(z) = 0.

The Legendre functions (F) are polynomials of order ¢.




The Oy ,, —functions are related to the Legendre functions by
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for £ > |m|, and are known as the associated Legendre functions.

The complete angular part of the solution is
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here
e Ny .,’s are normalization constants, and

e Y, s are called the spherical Harmonics.




The orthonormal relations for the spherical harmonics can be derived
from the orthonormal relations of the eigenvectors of L? and Ls:

{0 m'[6,m) = 8p g0 With Yy, (0, 0) = (0, 1€, m)
and the completeness relation
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This integral vanishes unless the m quantum numbers are equal.
In addition, the integral vanishes unless ¢/ = /.




To see this let us remember that P ,, satisfies the equation
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where Py, = O({,m).
We can show that
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Thus our normalization condition now becomes
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Thus the normalization constant is determined to be

20 +1 (£ — |ml)!
Ny, =N, == .
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Conventionally we choose the sign to be (—1)™ for m > 0 and + for

m < 0. Therefore, the normalized angular solutions are

2 1 (€ — ! :
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where € = (—1)" for m > 0 and € = +1 for m < 0.

The complete solution to the Schrodinger equation is

wE,E,m(fra 0, ¢) — R(T)Yﬁ,m(ea ¢) '

The radial part R(r) is determined by the dynamics of the system.




