PHYS 3803: Quantum Mechanics I, Spring 2021
Lecture 23, April 22, 2021 (Thursday)

- Handout: Solutions to Problem Set 9.
- Reading: Angular Momentum: Griffiths 4.1 and 4.3
- Assignments: Problem Set 10 due April 30 (Friday). Submit your homework assignments to Canvas.

Topics for Today: Angular Momentum [Griffiths 4.3]
5.3 Schrödinger equation for spherically symmetric potentials
Next Lecture: Hydrogen Atom [Griffiths 4.2]
6.1 Relative Motion of Two Particles
6.2 Introduction to the Hydrogen Atom

5.2 Rotations and Angular Momentum

The θ equation is

$$\frac{d}{d\theta}\Theta_{\ell,\ell}(\theta) - \ell \cot \theta \Theta_{\ell,\ell}(\theta) = 0$$

That has the solution

 $\Theta_{\ell,\ell}(\theta) = A(\sin\theta)^{\ell}$, and $U_{\ell,\ell}(r,\theta,\phi) = R_{\ell,\ell}(r)(\sin\theta)^{\ell} e^{i\ell\phi}$.

Note that rotation only affects the angular parts.

- The radial component should not depend on any angular momentum quantum numbers.
- It should be the same for all wave functions of different angular momentum quantum numbers and is determined by the dynamics of the system.

Thus

$$U_{\ell,\ell}(r,\theta,\phi) = R_{\ell,\ell}(r)(\sin\theta)^{\ell} e^{i\ell\phi} \,.$$

Any other wave function can be obtained from this by using the lowering operator. Thus

$$\begin{aligned} |\ell, \ell - 1\rangle &= \frac{1}{[\ell(\ell+1) - \ell(\ell-1)]^{1/2}\hbar} L_{-}|\ell, \ell\rangle &= \frac{1}{\sqrt{2\ell}\hbar} L_{-}|\ell, \ell\rangle \\ U_{\ell,\ell-1}(r,\theta,\phi) &= \frac{1}{\sqrt{2\ell}\hbar} (-1)\hbar e^{-i\phi} (\frac{\partial}{\partial\theta} - i\cot\theta \frac{\partial}{\partial\phi}) U_{\ell,\ell}(r,\theta,\phi) \\ &= -\frac{2}{\sqrt{2\ell}\hbar} e^{-i\phi} \cdot \frac{\partial}{\partial\theta} U_{\ell,\ell}(r,\theta,\phi) \end{aligned}$$

where we have used

$$(\frac{\partial}{\partial \theta} + i \cot \theta \frac{\partial}{\partial \phi}) U_{\ell,\ell}(r,\theta,\phi) = 0, \text{ or}$$

$$+ i \cot \theta \frac{\partial}{\partial \phi} U_{\ell,\ell}(r,\theta,\phi) = -\frac{\partial}{\partial \theta} U_{\ell,\ell}(r,\theta,\phi).$$

Thus

$$U_{\ell,\ell-1}(r,\theta,\phi) = \frac{(-1)}{\sqrt{2\ell}} \cdot 2e^{-i\phi}R(r)e^{i\ell\phi}\frac{d}{d\theta}(\sin\theta)^{\ell}$$
$$= \frac{(-1)}{\sqrt{2\ell}} \cdot 2R(r)e^{i(\ell-1)\phi} \cdot \ell(\sin\theta)^{\ell-1}\cos\theta$$
$$= -\sqrt{2\ell}R(r)e^{i(\ell-1)\phi}(\sin\theta)^{\ell-1}\cos\theta.$$

A general wave function $U_{\ell,m}(r,\theta,\phi)$ can be obtained by applying the lowering operator $\ell - m$ times with suitable normalization.

The interesting conclusions of this operator method is that the angular momentum operator L^2 has eigenvalues of the form

(i)
$$L^2|\ell,m\rangle = \ell(\ell+1)\hbar^2|\ell,m\rangle$$

(ii) ℓ takes integer as well as half integral values.

This is certainly a triumph of quantum mechanics.

For the energy associated with rotation, the Hamiltonian is denoted by

$$H = \frac{L^2}{2I}$$

with the eigenvalue

$$H|\ell,m
angle = E_{ heta}|\ell,m
angle$$

where I is the moment of inertia of the system.

In the old quantum theory, someone suggested the eigenvalues of L^2 as

$$L^2|\ell,m\rangle = \ell^2 \hbar^2 |\ell,m\rangle$$
 and $E_{\theta} = \frac{\ell^2 \hbar^2}{2I}$ with $\ell = 0, 1, 2, \cdots$.

That leads to the separation of energy levels in molecules in the proportions

$$\Delta E_{10} : \Delta E_{21} : \Delta E_{32} : \Delta E_{43} : \dots = 1 : 3 : 5 : 7 : \dots$$

However, this was not observed.

The correct quantum mechanics predicts

$$L^2|\ell,m\rangle = \ell(\ell+1)\hbar^2|\ell,m\rangle$$
 with $\ell = 0, 1, 2, \cdots$.

The observed energy separations were in the proportions

 $\Delta E_{10} : \Delta E_{21} : \Delta E_{32} : \Delta E_{43} : \dots = 1 : 2 : 3 : 4 : \dots = 2 : 4 : 6 : 8 : \dots$

That confirms the correct quantum theory with

$$L^2|\ell,m\rangle = \ell(\ell+1)\hbar^2|\ell,m\rangle$$
 and $E_{\theta} = \frac{\ell(\ell+1)\hbar^2}{2I}$ with $\ell = 0, 1, 2, \cdots$

- The angular momentum eigenvalues take integral values and the extra term arise from the noncommutativity of different components of the angular momentum operators.
- If we solve Schrödinger equations, we would only obtain integral values for angular momentum eigenvalue.
- The operator method, on the other hand, allows half integral eigenvalues as well.

5.3 Schrödinger equation for spherically symmetric potentials

Spherical symmetry \leftrightarrow Rotational invariance \leftrightarrow Conservation of angular momentum

In spherical coordinates,

(i) the gradient operator is

$$\nabla = \hat{r}\frac{\partial}{\partial r} + \hat{\theta}\frac{1}{r}\frac{\partial}{\partial \theta} + \hat{\phi}\frac{1}{r\sin\theta}\frac{\partial}{\partial \phi}.$$

(ii) the Laplacian is

$$\nabla^2 = \frac{1}{r^2} \frac{\partial}{\partial r} \left(r^2 \frac{\partial}{\partial r} \right) + \frac{1}{r^2 \sin \theta} \frac{\partial}{\partial \theta} \left(\sin \theta \frac{\partial}{\partial \theta} \right) + \frac{1}{r^2 \sin^2 \theta} \frac{\partial^2}{\partial \phi^2} \,.$$

(iii) the angular momentum operators are

$$L_x = i\hbar \left(\sin \phi \frac{\partial}{\partial \theta} + \cot \theta \cos \phi \frac{\partial}{\partial \phi} \right)$$
$$L_y = i\hbar \left(-\cos \phi \frac{\partial}{\partial \theta} + \cot \theta \sin \phi \frac{\partial}{\partial \phi} \right)$$
$$L_z = -i\hbar \frac{\partial}{\partial \phi} .$$

Then

$$L_x^2 = (i\hbar)^2 \quad (\sin^2 \phi \frac{\partial^2}{\partial \theta^2} - \csc^2 \theta \sin \phi \cos \phi \frac{\partial}{\partial \phi} + \cot \theta \sin \phi \cos \phi \frac{\partial^2}{\partial \theta \partial \phi} + \cot \theta \cos^2 \phi \frac{\partial}{\partial \theta} + \cot \theta \sin \phi \cos \phi \frac{\partial^2}{\partial \theta \partial \phi} - \cot \theta^2 \sin \phi \cos \phi \frac{\partial}{\partial \phi} + \cot \theta^2 \cos^2 \phi \frac{\partial}{\partial \phi})$$

$$\begin{split} L_y^2 &= (i\hbar)^2 \quad (\cos^2 \phi \frac{\partial^2}{\partial \theta^2} + \csc^2 \theta \sin \phi \cos \phi \frac{\partial}{\partial \phi} - \cot \theta \sin \phi \cos \phi \frac{\partial^2}{\partial \theta \partial \phi} \\ &+ \cot \theta \sin^2 \phi \frac{\partial}{\partial \theta} - \cot \theta \sin \phi \cos \phi \frac{\partial^2}{\partial \theta \partial \phi} \\ &+ \cot \theta^2 \sin \phi \cos \phi \frac{\partial}{\partial \phi} + \cot^2 \theta \sin^2 \phi \frac{\partial}{\partial \phi}) \end{split}$$

$$\begin{split} L_z^2 &= (-i\hbar)^2 \frac{\partial^2}{\partial \phi^2} \quad \text{and} \\ L^2 &= L_x^2 + L_y^2 + L_z^2 \\ &= (i\hbar)^2 (\frac{\partial^2}{\partial \theta^2} + \cot \theta \frac{\partial}{\partial \theta} + \csc^2 \theta \frac{\partial^2}{\partial \phi^2}) \\ &= (i\hbar)^2 \left[\frac{1}{\sin \theta} \frac{\partial}{\partial \theta} (\sin \theta \frac{\partial}{\partial \theta}) + \frac{1}{\sin^2 \theta} \frac{\partial^2}{\partial \phi^2} \right] \\ &= -\hbar^2 \left[\frac{1}{\sin \theta} \frac{\partial}{\partial \theta} (\sin \theta \frac{\partial}{\partial \theta}) + \frac{1}{\sin^2 \theta} \frac{\partial^2}{\partial \phi^2} \right]. \end{split}$$

Thus we can write the Laplacian as

$$\nabla^2 = \frac{1}{r^2} \frac{\partial}{\partial r} \left(r^2 \frac{\partial}{\partial r} \right) + \frac{1}{r^2} \frac{L^2}{(i\hbar)^2}$$
$$= \frac{1}{r^2} \frac{\partial}{\partial r} \left(r^2 \frac{\partial}{\partial r} \right) - \frac{L^2}{\hbar^2 r^2}$$

And the Schrödinger equation for this system becomes

 $H\psi(r,\theta,\phi) = E\psi(r,\theta,\phi)$

$$\begin{split} & [-\frac{\hbar^2}{2m}\nabla^2 + V(r)]\psi(r,\theta,\phi) &= E\psi(r,\theta,\phi) \\ \{-\frac{\hbar^2}{2m}[\frac{1}{r^2}\frac{\partial}{\partial r}(r^2\frac{\partial}{\partial r}) - \frac{L^2}{\hbar^2r^2}] + V(r)\}\psi(r,\theta,\phi) &= E\psi(r,\theta,\phi) \end{split}$$

Let us now use a separable solution

$$\psi(r,\theta,\phi) = R(r)F(\theta,\phi)$$

The equation now becomes

$$F(\theta,\phi)\{-\frac{\hbar^2}{2m}[\frac{1}{r^2}\frac{d}{dr}(r^2\frac{d}{dr})R(r) + [V(r) - E]R(r)\} = -R(r)\frac{L^2}{2mr^2}F(\theta,\phi)$$

or

$$\frac{1}{R(r)} \{ \frac{d}{dr} (r^2 \frac{d}{dr}) R(r) + \frac{2mr^2}{\hbar^2} [E - V(r)] R(r) \} = \frac{1}{F(\theta, \phi)} \frac{L^2}{\hbar^2} F(\theta, \phi) = \lambda$$

Thus we have

$$\frac{d}{dr}(r^2\frac{dR}{dr}) + \frac{2mr^2}{\hbar^2}[E - V(r)]R(r) = \lambda R(r)$$

and

$$L^2 F(\theta, \phi) = \hbar^2 \lambda F(\theta, \phi)$$

This shows that $\hbar^2 \lambda$ is the eigenvalue of the operator L^2 with the eigenfunction $F(\theta, \phi)$. Furthermore, the solution of the radial equation depends on the form of the potential.

Let's consider the angular part,

$$L^2 F(\theta, \phi) = \hbar^2 \lambda F(\theta, \phi)$$

or

$$-\left[\frac{1}{\sin\theta}\frac{\partial}{\partial\theta}(\sin\theta\frac{\partial}{\partial\theta}) + \frac{1}{\sin^2\theta}\frac{\partial^2}{\partial\phi^2}\right]F(\theta,\phi) = \lambda F(\theta,\phi)\,.$$

Let us further separate variables with

 $F(\theta,\phi) = \Theta(\theta) \Phi(\phi).$

Then the equation becomes

$$\Phi(\phi) \left[\frac{1}{\sin \theta} \frac{d}{d\theta} (\sin \theta \frac{d\Theta}{d\theta}) + \lambda \Theta \right] = -\frac{\Theta(\theta)}{\sin^2 \theta} \frac{d^2 \Phi}{d\phi^2}$$

or

$$\frac{1}{\Theta(\theta)} \left[\sin \theta \frac{d}{d\theta} (\sin \theta \frac{d\Theta}{d\theta}) + \lambda \sin^2 \theta \right] \Theta = -\frac{1}{\Phi(\phi)} \frac{d^2 \Phi}{d\phi^2} = \alpha.$$

Thus we have

$$\sin\theta \frac{d}{d\theta} (\sin\theta \frac{d\Theta}{d\theta}) + \lambda \sin^2\theta\Theta = \alpha\Theta$$

and

$$\frac{L_z^2}{(i\hbar)^2}\Phi = \frac{d^2\Phi}{d\phi^2} = -\alpha\Phi(\phi).$$

The ϕ -equation

The ϕ -equation now becomes

$$\frac{L_z^2}{(i\hbar)^2}\Phi = \frac{d^2\Phi}{d\phi^2} = -\alpha\Phi(\phi)$$

and the solution is

$$\Phi(\phi) = A e^{i\sqrt{\alpha}\phi} + B e^{-i\sqrt{\alpha}\phi} \,.$$

Since the wave function has to be single valued and continuous, we expect

$$\alpha = m^2$$

where $m = 0, \pm 1, \pm 2, \dots =$ integers.

Thus the normalized eigenfunction in the ϕ basis is

$$\Phi_m(\phi) = \frac{1}{\sqrt{2\pi}} e^{im\phi}, \ \ 0 \le \phi \le 2\pi.$$

It is also clear that $m\hbar$ is the eigenvalue of L_z with the eigenfunction $\Phi_m(\phi)$. The integer nature of m arises because we want

$$\Phi_m(\phi) = \Phi_m(\phi + 2\pi).$$

The θ -equation

The θ -equation now becomes

$$\sin\theta \frac{d}{d\theta} (\sin\theta \frac{d\Theta}{d\theta}) + \lambda \sin^2\theta \Theta = m^2 \Theta$$

or

$$\sin\theta \frac{d}{d\theta} (\sin\theta \frac{d\Theta}{d\theta}) + (\lambda \sin^2\theta - m^2)\Theta = 0.$$

Let $x = \cos \theta$, then

$$\frac{d}{d\theta} = \frac{dx}{d\theta}\frac{d}{dx} = -\sin\theta\frac{d}{dx} = -(1-x^2)^{1/2}\frac{d}{dx}.$$

The θ -equation becomes

$$(1-x^2)\frac{d}{dx}[(1-x^2)\frac{d\Theta}{dx}] + [\lambda(1-x^2) - m^2]\Theta = 0.$$

That leads to

$$(1-x^2)\frac{d^2\Theta}{dx^2} - 2x\frac{d\Theta}{dx} + \left[\lambda - \frac{m^2}{(1-x^2)}\right]\Theta = 0.$$

We expect the solution of the following form

$$\Theta(x) = (1 - x^2)^{\frac{|m|}{2}} \sum_{k=0}^{\infty} a_k x^k = (1 - x^2)^{\frac{|m|}{2}} z(x) \quad \text{with} \quad z(x) = \sum_{k=0}^{\infty} a_k x^k.$$

Putting this back into the equation, we obtain

$$\begin{split} &(1-x^2) \left[(1-x^2)^{\frac{|m|}{2}} \frac{d^2 z}{dx^2} - 2|m|x(1-x^2)^{\frac{|m|}{2}-1} \frac{dz}{dx} \\ &+ \left(-|m|(1-x^2)^{\frac{|m|}{2}-1} + |m|(|m|-2)x^2(1-x^2)^{\frac{|m|}{2}-2} \right) z \right] \\ &- 2x \left[(1-x^2)^{\frac{|m|}{2}} \frac{dz}{dx} - |m|x(1-x^2)^{\frac{|m|}{2}-1} z \right] \\ &+ \left[\lambda - \frac{m^2}{(1-x^2)} \right] (1-x^2)^{\frac{|m|}{2}} z(x) = 0 \,. \end{split}$$

That leads to

$$\left[(1-x^2)\frac{d^2z}{dx^2} - 2(|m|+1)x\frac{dz}{dx} + (\lambda - |m|)z \right] (1-x^2)^{\frac{|m|}{2}} + (1-x^2)^{\frac{|m|}{2}-1} \left[+2|m|(\frac{|m|}{2}-1)x^2 + 2|m|x^2 - m^2 \right] z = 0$$

or

$$(1-x^2)\frac{d^2z}{dx^2} - 2(|m|+1)x\frac{dz}{dx} + \left[\lambda - |m|(|m|+1)\right]z = 0.$$

Applying the power series solution for z, we obtain

$$(1-x^2)\sum_{k=2}^{\infty}k(k-1)a_kx^{k-2} - 2(|m|+1)x\sum_{k=1}^{\infty}ka_kx^{k-1} + \left[\lambda - |m|(|m|+1)\right]\sum_{k=0}^{\infty}a_kx^k = 0 \quad \text{with} \quad z(x) = \sum_{k=0}^{\infty}a_kx^k.$$

That leads to

$$\begin{split} &\sum_{k=2}^{\infty} k(k-1)a_k x^{k-2} - \sum_{k=2}^{\infty} k(k-1)a_k x^k - 2(|m|+1) \sum_{k=1}^{\infty} ka_k x^k \\ &+ [\lambda - |m|(|m|+1)] \sum_{k=0}^{\infty} a_k x^k = 0 \,, \quad \text{or} \\ &\sum_{k=0}^{\infty} (k+2)(k+1)a_{k+2} x^k - \sum_{k=0}^{\infty} k(k-1)a_k x^k - 2(|m|+1) \sum_{k=0}^{\infty} ka_k x^k \\ &+ [\lambda - |m|(|m|+1)] \sum_{k=0}^{\infty} a_k x^k = 0 \,, \quad \text{or} \\ &\sum_{k=0}^{\infty} x^k \Big[(k+2)(k+1)a_{k+2} \\ &- \Big(k(k-1) + 2k(|m|+1) + |m|(|m|+1) - \lambda \Big) a_k \Big] = 0 \,. \end{split}$$

Then we have

$$a_{k+2} = \frac{1}{(k+2)(k+1)} \Big[k^2 + k(2|m|+1) + |m|(|m|+1) - \lambda \Big] a_k$$

= $\frac{1}{(k+2)(k+1)} \Big[(k+|m|)(k+|m|+1) - \lambda \Big] a_k.$

This defines the recursion relation for the power series solution. Clearly for large k

$$a_{k+2} \simeq a_k$$
 and $z(x) \sim \frac{1}{1-x^2} = 1 + x^2 + x^4 + \mathcal{O}(x^6)$.

This would imply that the solution blows up for some value of m.

For a physical solution to exist, the series must terminate and we have

$$\begin{aligned} &(k+|m|)(k+|m|+1)-\lambda=0\,,\quad \text{or}\\ &\lambda=\ell(\ell+1)\,,\quad \text{where}\quad \ell=k+|m|\,. \end{aligned}$$

Since both k and m are integers, ℓ also takes integral values.

Furthermore, k and |m| are both positive, then

 $\ell = 0, 1, 2, 3, \cdots$

and for each ℓ , the integer m takes $2\ell + 1$ values

 $-\ell \leq m \leq \ell$

Thus the eigenvalues of L^2 are

 $\lambda \hbar^2 = \ell (\ell + 1) \hbar^2$

where $\ell = 0, 1, 2, 3, \cdots$ and the eigenvalues of L_z are

 $m\hbar$

where m is an integer and $-\ell \leq m \leq \ell$.

- The recursion relation of a_k implies that if $k = \ell |m|$ is even the solution contains only even powers of x. However, if k is odd then only the odd terms in the series survive.
- This is similar to the harmonic oscillator solutions.

The solution now depends on two quantum numbers ℓ and m and is denoted by

$$z(x) = z_{\ell,m}(x)$$
$$x = \cos \theta.$$

This is a polynomial of order $k = \ell - |m|$, and the θ -solution

$$\Theta_{\ell,m} = (1 - x^2)^{\frac{|m|}{2}} z_{\ell,m}(x)$$

satisfies the equation

$$(1-x^2)\frac{d^2\Theta}{dx^2} - 2x\frac{d\Theta}{dx} + [\ell(\ell+1) - \frac{m^2}{1-x^2}]\Theta_{\ell,m} = 0.$$

For m = 0, the equation is known as the Legendre equation and the solutions of the equation are known as the Legendre functions $P_{\ell}(x)$:

$$(1-x^2)\frac{d^2P_\ell}{dx^2} - 2x\frac{dP_\ell}{dx} + \ell(\ell+1)P_\ell(x) = 0.$$

The Legendre functions (P_{ℓ}) are polynomials of order ℓ .

The $\Theta_{\ell,m}$ -functions are related to the Legendre functions by

$$\Theta_{\ell,m}(x) = (1 - x^2)^{\frac{|m|}{2}} \frac{d^{|m|} P_{\ell}(x)}{dx^{|m|}} = P_{\ell,m}(x)$$

for $\ell \ge |m|$, and are known as the associated Legendre functions. The complete angular part of the solution is

$$F_{\ell,m}(\theta,\phi) = Y_{\ell,m}(\theta,\phi) = \frac{N_{\ell,m}}{\sqrt{2\pi}} P_{\ell,m}(\theta) e^{im\phi}$$

here

- $N_{\ell,m}$'s are normalization constants, and
- $Y_{\ell,m}$'s are called the spherical Harmonics.

The orthonormal relations for the spherical harmonics can be derived from the orthonormal relations of the eigenvectors of L^2 and L_3 :

$$\langle \ell', m' | \ell, m \rangle = \delta_{\ell'\ell} \delta_{m'm}$$
 with $Y_{\ell,m}(\theta, \phi) \equiv \langle \theta, \phi | \ell, m \rangle$

and the completeness relation

$$\int |\theta, \phi\rangle \langle \theta, \phi| \, d\Omega = \int |\theta, \phi\rangle \langle \theta, \phi| \, \sin \theta d\theta \, d\phi = \mathrm{I} \, .$$

That leads to

$$\begin{aligned} \langle \ell', m' | \ell, m \rangle &= \int \langle \ell', m' | \theta, \phi \rangle \langle \theta, \phi | \ell, m \rangle d\Omega &= \delta_{\ell' \ell} \delta_{m' m} \\ &= \int Y_{\ell', m'}^*(\theta, \phi) Y_{\ell, m}(\theta, \phi) \sin \theta d\theta d\phi \\ &= \frac{N_{\ell', m'}^* N_{\ell, m}}{2\pi} \int P_{\ell', m'} P_{\ell, m} e^{-i(m' - m)\phi} d(\cos \theta) d\phi \,. \end{aligned}$$

This integral vanishes unless the m quantum numbers are equal. In addition, the integral vanishes unless $\ell' = \ell$. To see this let us remember that $P_{\ell,m}$ satisfies the equation

$$(1-x^2)\frac{d^2 P_{\ell,m}}{dx^2} - 2x\frac{dP_{\ell,m}}{dx} + \left[\ell(\ell+1) - \frac{m^2}{1-x^2}\right]P_{\ell,m} = 0$$

or

$$\frac{d}{dx}\left[(1-x^2)\frac{dP_{\ell,m}}{dx}\right] + \left[\ell(\ell+1) - \frac{m^2}{1-x^2}\right]P_{\ell,m} = 0$$

where $P_{\ell,m} = \Theta(\ell,m)$.

We can show that

٠

$$\int [P_{\ell,m}(x)]^2 dx = \frac{2}{2\ell+1} \frac{(\ell+|m|)!}{(\ell-|m|)!} \quad \text{with} \quad x = \cos\theta.$$

Thus our normalization condition now becomes

$$\int Y_{\ell,m}^* Y_{\ell,m} \sin \theta d\theta d\phi = |N_{\ell,m}|^2 \int dx [P_{\ell,m}]^2 dx$$
$$= |N_{\ell,m}|^2 \frac{2}{2\ell+1} \frac{(\ell+|m|)!}{(\ell-|m|)!} = 1$$

Thus the normalization constant is determined to be

$$N_{\ell,m} = N_{\ell,m}^* = \pm \sqrt{\frac{2\ell+1}{2} \frac{(\ell-|m|)!}{(\ell+|m|)!}}.$$

Conventionally we choose the sign to be $(-1)^m$ for m > 0 and + for $m \le 0$. Therefore, the normalized angular solutions are

$$Y_{\ell,m} = \epsilon \sqrt{\frac{2\ell+1}{4\pi} \frac{(\ell-|m|)!}{(\ell+|m|)!}} P_{\ell,m}(\cos\theta) e^{im\phi}$$

where $\epsilon = (-1)^m$ for m > 0 and $\epsilon = +1$ for $m \le 0$.

The complete solution to the Schrödinger equation is

$$\psi_{E,\ell,m}(r,\theta,\phi) = R(r)Y_{\ell,m}(\theta,\phi).$$

The radial part R(r) is determined by the dynamics of the system.