PHYS 3803: Quantum Mechanics I, Spring 2021

Lecture 22, April 20, 2021 (Tuesday)

e Reading: Angular Momentum: Griffiths 4.1 and 4.3
e Assignments: Problem Set 10 due April 30 (Friday).

Submit your homework assignments to Canvas.




Topics for Today: Angular Momentum |Griffiths 4.3]

5.2 Rotations and Angular Momentum

Topics for Next Lecture: Angular Momentum

5.3 Schrodinger equation for spherically symmetric potentials




5 Rotations and Angular Momentum

5.2 Rotations and Angular Momentum

To study the eigenvalue spectrum of these operators, we define

Li=Li+ily, L_=1L —iLy, L_=(L)".

The commutation relations of angular momentum operators L_, L.,
and L3 are similar to those of a,a’ and H for the harmonic oscillator:

L.,Ls] = —hL., [L_,L3] = hL_, and
[L.,L_] = 2hLs, [L3,L?] = 0.
Let us choose the normalized states |/, m) as common eigenvectors for
L? and Ls:
L3¢, m) {04+ DR,m), —<m</{
Ls|t,m) mhl|l,m) .




Homework:

(a) Show that

L. |l,m) dpm |, m + 1)
[0+ 1) —m(m + D)]2R]6,m + 1),

d = d* = [0(0+1) —m(m +1)]*"*h.

(b) Similarly, we can also show that

L_[{,m) = cpll,m—1)
(0 4+1) — m(m — D]Y2h|6,m — 1),




There are several interesting things to note.

e This set of eigenvectors |/, m) define all the eigenstates for a

particular value of /.

e They define a Hilbert space £f that is a subspace of the total

Hilbert space of the angular momentum operators.

e That means the operators L?, Ls, L. and L_ take any vector in

this space to another vector in the space.

e In other words, they leave the space £ invariant. The

dimensionality of the space is 2¢ + 1.
Let us now look at some specific examples for [¢,m), —¢ < m </,

(i) £ =0, dimensionality of the representation is 2 +1 =1, and m = 0.




(ii) ¢ = 1/2, dimensionality of the representation is 2¢ + 1 = 2, and
m = +1/2. Let the states be

We have

U, m'|Lz|l, m) = mh{l,m'|l,m) = mho,/m .

This implies that the matrix elements are




Similarly

(¢, m'|L*|¢,m)

<€7 m/|L+‘£7 m>

{,m'|L_|¢,m)

04+ DR, m |6, m)
004+ 1) A% 6rmrm
dm (€,m |6, m + 1)

dmém’ ;m—+1

[0+ 1) — m(m 4+ D] 2R mr
cm(l,m'|[,m — 1)

Cmdm’,m—l

00+ 1) — m(m — 1)]Y2R8, e -




Thus the generators of angular momentum have different

representations in different spaces.




To find out the spatial eigenfunctions, we note that rotational

symmetry is best studied in the spherical coordinates.

In spherical coordinates,

x r sin @ cos ¢
Y r sin @ sin ¢

2z r cos 0

and the angular momentum operators take the following form

L, =1ih <sm¢§6 + cos ¢ cot 0 — 0 )

O

0 -+ sin ¢ cot 988¢>

L, =1ih (—cosgb&g

0
L = —’Lha—¢




=

ih [(sin ¢ F 1cos Q) —(% + (cos ¢ £ isin ¢)
o[ 0 0
+i¢ .
+he (—89 + 7 cot Q—Ekb) :

We know that
Li|t,0)=0.
In the spherical coordinate basis, this becomes
[ 0 0

% +ZCOtHa—¢] Ue7g(7",9,¢) =0.

Furthermore, we have

L.|0,0) = Ch|e, 0).




In the spherical coordinate basis, L,|¢,¢) = ¢h|¢,f) becomes

—ih%(r,@,cﬁ%ﬁ) = (h(r,0,¢|¢,f) or ({%Ug,g(r,ﬁ,gb) = iUy 4(1,6,0) .

Thus
Upe(r,0,0) = (1,0, ¢[0,0) = Fyo(r,0)®(¢) = Fyo(r,0)e™?.
Let us separate variables and rewrite
Fro(r,0) = Ry o(r)©g.0(0) .

Putting this back into the equation we have

o 0
<% + 7 cot 90—¢> Ug(r,0,0)

[d% +i(cot 9)(%)] ©¢,0(0)

%@g)g(@) — { cot 9@@)5(9)




The 6 equation is

d
@@g,g(e) — { cot 9@&5(9) =0.

That has the solution

@g,g(e) = A(Sin 9)€

Ug’g(r, 9, ¢) = Rg,g(T) (Sin 9)€€i£¢ .

Note that rotation only affects the angular parts.

e The radial component should not depend on any angular

momentum quantum numbers.

e It should be the same for all wave functions of different angular
momentum quantum numbers and is determined by the dynamics

of the system.




Ug)g(?“, 9, qb) = Rg’g(T> (Sin 9)£6M¢ .

Any other wave function can be obtained from this by using the

lowering operator. Thus

1 1
(l—1) = L_|(,l) = ——L_\|{,/
B R ) e R TT
0 0

Ug,g_1<7“,(9,¢) he_iqb(% — 7 cot 98—¢>U£’£(T79’¢>

UE,K(Ta 97 Qb)

s O
—_ e ¢ —_——
V20 R 00

where we have used

o 0
(% + 1 cot 98—¢)U£,£(Ta 0,¢)

, 0
+1i cot Ga—gbUg,g(r, 0,9)




1 | |
% : Qe_wR(r)ew(bdig (sin §)*

1 |
2 2R(r)e P p(sin§) "t cos @

V20
— V2UR(r)e" "V (sin 0)* ! cos 6 .

Similarly, a general wave function Uy ,,(r, 8, ¢) can be obtained by

applying the lowering operator £ — m times with suitable normalization.

The interesting conclusions of this operator method is that the angular

momentum operator L? has eigenvalues of the form

1. [i] £(¢ + 1)R°

2. [ii] £ takes integer as well as half integral values.




This is certainly a triumph of quantum mechanics.

For the energy associated with rotation, the Hamiltonian is denoted by

H=—
21

with the eigenvalue
H|l,m) = Eg|l,m)

where [ is the moment of inertia of the system.
In the old quantum theory, someone suggested the eigenvalues of L? as
s
21

That leads to the separation of energy levels in molecules in the

L3¢, m) = ?h*|¢,m) and FEjy=

with £=0,1,2,--- .

proportions
AF19:AFEy : AFE39 : AFy3:---=1:3:5:7:---

However, this was not observed.




The correct quantum mechanics predicts
L0, m) =00 + DB, m) with £=0,1,2,---.
The observed energy separations were in the proportions
AF10: AFEo :AE3 : AEy3:---=1:2:3:4:---=2:4:6:8:---.

That confirms the correct quantum theory with

00+ 1R
21

e The angular momentum eigenvalues take integral values and the

L2|6,m) = (¢ + D)R*|¢,m) and FEjy=

extra term arise from the noncommutativity of different
components of the angular momentum operators.

e If we solve Schrodinger equations, we would only obtain integral

values for angular momentum eigenvalue.

e The operator method, on the other hand, allows half integral

eigenvalues as well.

with £=0,1,2,---



