PHYS 3803: Quantum Mechanics I, Spring 2021

Lecture 19, April 08, 2021 (Thursday)

e Reading: Angular Momentum: Griffiths 4.1 and 4.3

e Assignments: Problem Set 9 due April 16 (Friday).

Submit your homework assignments to Canvas.




Topics for Today: Rotations and Angular
Momentum [Griffiths 4.3]

5.1 Rotations in T'wo Dimensions

5.2 Rotations and Angular Momentum

Topics for Next Lecture: Angular Momentum

5.3 Schrodinger equation for spherically symmetric potentials




5 Rotations and Angular Momentum

5.1 Rotations in Two Dimensions

In classical mechanics, if we rotate a position vector (7) by an angle ¢
about the z—axis, then the coordinates of the particle change as

r — 2 =xzcos¢p—ysing

y — Yy =xsing +ycoso

Figure 1: Rotation in the two dimensional (x,y) plane with 8 — ¢.




Similarly

Px — Dy =Pz COSQ—p,sing
py — P, = Dxsing -+ p,cos ¢

We can also write it in the matrix form as

cos¢ —sing

sin @ COS @

cCos¢@ —sing Dy
sin ¢ COS @ Dy




Let us denote by R(¢) the matrix that rotates these vectors and Ug(¢)
the operator that acts on the Hilbert space of states corresponding to

the rotation R(¢). Then in the active picture
¥) = [¥r) = Urlt) .

To find out the effect of rotation on an arbitrary state, let us examine
the effect of rotation on the coordinate basis

Ur(6)|z,y) = |z cos ¢ — ysin ¢, zsin 6 + y cos ¢)

From this again we can show that rotation operator is unitary

UL(¢)Ur(¢) = 1.

Let us write the generator for infinitesimal rotation about the z—axis as

UR(e):I—%GG.




The generators of infinitesimal rotation are are Hermitian because the

rotation operators are unitary

Uk(¢)Ur(¢) =1 = UL(¢)=Ug'(¢) and G'=G.

Under infinitesimal rotations with small angle approximation, we have

cose ~ 1 and sine~e¢

Ur(e)lz,y) = |z—ey,ex+y) and Ug'(e)|z,y) = |z + ey, —ex +y)
such that |¢Yr) = Ug(€)|y) and

¢R(x7y) <$ay\¢R>
(, y|Ur(€)|)
(x + ey, —ex + yl|ih)

Wfﬁ + €Y, —€x + y) .




We have applied Ug(e) = I — (i/h)eG,
(@, y|Ur Uglz. )" = [Ug'[a, 9]
“ZC + €Y, —€r + y>]T - <ZC + €Y, —€r + y‘ :

That leads to

Yr(T,y) (@, y|Ur(e)[Y) = (z+ ey, —ex + y[h)

¢(l’ + €Y, —€x —+ y)

9, 0
V(x,y) + ey%w(ﬂc, y) — 6wa—y¢(fc, y) ie.

(@l = 560 = (1- 466 vlan).

Therefore

? 0 0
——G=y— —x— d = XP,—-YP,.=1L,.
hG Yo x@y and G "

The angular momentum operator (L,) is the generator of infinitesimal

rotations about the z-axis.




Furthermore, the theory is rotationally invariant if
UY'(RYHU(R) = H (Similarity transformation).

Putting in the infinitesimal structure of Ug(¢€), we have
1€

hmehﬂ)WﬂlUﬂdzl—E&z

h

(L., H| =0.

We can construct a finite rotation about the z—axis by taking
successive infinitesimal rotations such that ¢ = ¢/N, N — oo.
Thus we have

Un(6) = Jim (1- L)Y

. 9 N
pm (1= 77 L)

_%Lz

€




Since [L,, L,| = 0, it is clear that

Ur(¢1)Ur(¢2) = Ur(é1 + ¢2) -

That is, rotations about the same axis are additive.

The two dimensional vectors (x,y) can equivalently be described by the

circular coordinates (7, @).
e A rotation does not change the radial vector.
e It changes the angle(s).

e Thus in this basis
Ur(A@)|r,¢) = |r,¢ + Ag).

Furthermore, note that since 0 < ¢ < 27, the parameter of rotation is
also bounded 0 < ¢ < 2.




In this basis with polar coordinates (7, ¢),
Yr) = UrlY)
[ rdrdo Un(36)1r.6)0(r. 0

/ rdrdg |r, ¢ + 8 (r, )

/ rdrde |r, $Y(r, § — Ag).

(r,dltr) = ¥(r,¢ — Ag)

r(r, @) = (r, ¢ — Ag).

Furthermore,

Yr(r,¢) = (r,o|U(R)|¢Y) = ¢(r, ¢ — Ag).




For an infinitesimal rotation A¢ = € — 0+,

Vn(rd) = (roll - L)
(1 o %Lz) ¢(T7 ¢)

w(rv gb o 6) - ¢<7a7 ¢) R 6%@0(7“7 ¢) '
Thus in the (r, ¢) basis

0
L, — —ith—

O

Furthermore, we can show that rotations form a group. This is a Lie

group with transformation operators

where L, are generators and 6; are group parameters.




5.2 Rotations and Angular Momentum

Let us generalize the results of two dimensions to three dimensions.
There are three generators of infinitesimal rotations in the

3-dimensional space. Let us denote them by

YP, - ZP,
ZP, — XP,
XP,—YP,.

Let us find various commutators

[L,,X|=[YP, - ZP, X] =0

L, X| =[ZP, — XP.,X| = Z|P,, X] = —ihiZ

[L.,X|=[XP,—YP,,X]=—Y|P,, X]| = ihY.




To use a more compact notation, let us define

x 1, Yy=2x2, z=x3, and py = p1, Dy = P2, P. = D3;

X Xl,Y:XQ, Z:Xg, and Pa::Pla Py:PQ, PZIP3
Thus we can define the angular momentum operator as

Li — Eiijij, i,j, k= 1,2,3 and

€123 = 1, €213 =—1, €, =0.

where €, is the anti-symmetric Levi-Civita symbol.

Clearly, then

Li, X;] €ike X5 P, X;]
€ike Xk (—iNog;)
(—ih)éiijk
ihéiijk .




Homework:

Similarly we can show that
[Li7 Pj] — (zh)ewkpk .

Furthermore, the commutation relation of two angular momentum

operators 1S now
[Li, LJ] — ZhEZJkLk .
We will need to apply

(1) €ijk€emk = 0ie0jm — OimOje.

(i) €ijx is anti-symmetric.

(iii) Repeated indices are summed.

This shows that generators of angular momentum along different
directions do not commute. However

\L;, L;] =0, for any i.




