
PHYS 3803: Quantum Mechanics I, Spring 2021

Lecture 18, April 01, 2021 (Thursday)

• Reading:

Harmonic Oscillator: My Notes and Griffiths 2.3

Angular Momentum: Griffiths 4.1 and 4.3

• Assignments: Problem Set 8 due April 07 (Wednesday).

Submit your homework assignments to Canvas.
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Topics for Today: Harmonic Oscillator [Griffiths 2.3]

4.3 The Harmonic Oscillator in the Coordinate Basis

4.4 Oscillator in Higher Dimensions

5.1 Rotations in Two Dimensions

Topics for Next Lecture: Angular Momentum

5.2 Rotations and Angular Momentum

5.3 Schrödinger equation for spherically symmetric potentials
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4.3 The Harmonic Oscillator in the Coordinate Basis

In the x basis, the Hamiltonian for the Harmonic Oscillator is give by

H =
P 2

2m
+

1

2
mω2X2 = − h̄2

2m

d2

dx2
+

1

2
mω2x2.

Since the Hamiltonian has no time dependence, we have stationary

solutions. We know that the wave function for stationary solutions are

Ψ(x, t) = ψE(x)e−iEt/h̄

and the time independent Schrödinger Equation

Hψn(x) = Enψn(x) becomes(
− h̄2

2m

d2

dx2
+

1

2
mω2x2

)
ψn(x) = Enψn(x)

where ψn(x) is the eigenfunction of the Hamiltonian with energy En.
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We have found that the normalized eigenfunctions for the oscillator are

ψn(x) = AnHn

[(mω
h̄

)1/2

x

]
e−

1
2
mω
h̄ x2

=
(mω
πh̄

)1/4 1

(2n · n!)1/2
Hn

(√
mω

h̄
x

)
e−

1
2
mω
h̄ x2

.

And the wave function becomes

Ψn(x, t) =
(mω
πh̄

)1/4 1

(2n · n!)1/2
Hn

(√
mω

h̄
x

)
e−

1
2
mω
h̄ x2

e−iEnt/h̄

with

En =

(
n+

1

2

)
h̄ω .

That is the same energy derived from the matrix operator formalism.
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Figure 1: Normalized eigenfunctions versus y = ξ = (mω/h̄)1/2x.

If we plot the probability density for the oscillator in the ground state

its maximum probability is around the point of equilibrium (x = 0) and

tails off at large distances. This is the opposite of classical prediction.
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However, if we plot the probability for large values of the quantum

number (n) the behavior is as follows:

Figure 2: Probability density for n = 11 versus y = ξ = (mω/h̄)1/2x.

Thus as n→∞ the average of these plots behave like the classical

oscillator. This is what the correspondence principle says, namely,

when the energy becomes large the system must behave like a

macroscopic system.
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The energy of a quantum harmonic oscillator is quantized.

• The energy levels of the oscillator are spaced uniformly without

any dependence on any parameter of the theory like the mass.

• The levels differ from the adjacent ones by h̄ω.

• Thus we can consider that an oscillator of frequency ω are

associated with fictitious particles called quanta with energy h̄ω.

• In crystal physics these quanta are known as phonons whereas the

interaction matter with radiation is described in terms of quanta

known as photons.

The matrix elements of an operator represent the expectation values

and the transition amplitudes.

• The diagonal values of an operator represent expectation values of

that operator. In a stationary state these are time independent

Ωnn =

∫
Ψ∗n(x, t)[ΩΨn(x, t)] dx .
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• The off-diagonal elements of an operator become

Ωmn =

∫
Ψ∗m(x, t)[ΩΨn(x, t)] dx .

Such elements can be thought of as transition amplitudes between

states n and m.

• Just as in Hydrogen atom, the electron can drop down from an

excited level to a lower level with the emission of a photon, here

also any transition amplitude is accompanied by an emission or

absorption of quanta.

• Furthermore, since

Ψn(x, t) ∼ e−( ih̄ )Ent

therefore, the transition amplitudes

Ωmn ∼ e−( ih̄ )(En − Em)t

and varies with time for n 6= m.
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4.4 Oscillator in Higher Dimensions

Let us consider an oscillator in D dimensions. Thus

H =

D∑
i=1

Hi, and

Hi =
P 2
i

2m
+

1

2
mω2X2

i .

Such an oscillator whose frequency is the same in every direction is

known as the isotropic oscillator. We know the basic commutation

relations

[Xi, Xj ] = 0

[Pi, Pj ] = 0

[Xi, Pj ] = ih̄δij .
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To solve this problem we can think of them as a set of decoupled

harmonic oscillators. Each oscillator can be solved independently. The

Hilbert space of states E , therefore, separates now into product spaces.

Thus we can consider

E = E1 ⊗ E1 ⊗ ...⊗ ED

where Hi acts only on |Ei〉. We can also define operators

ai =

√
mω

2h̄
(Xi +

i

mω
Pi), and

a†i =

√
mω

2h̄
(Xi −

i

mω
Pi)

and

Ni = a†iai
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which are only on |Ei〉. The eigenvectors of Ni which are denoted by

|ni〉 define the vector space Ei

Ni|ni〉 = ni|ni〉

Hi|ni〉 = Eni |ni〉 = (ni +
1

2
)h̄ω|ni〉

with ni = 0, 1, 2, . . . ,∞. Thus E = E1 ⊗E1 ⊗ ...⊗ED. We can define the

states in E by the quantum numbers of the product spaces. Thus for

example

|n1, n2, . . . , nD〉 = |n1〉 ⊗ |n2〉 ⊗ ...|nD〉

where n1, n2, . . . , nD = 0, 1, 2, . . . ,∞. We can show that

[ai, aj ] = [a†i , a
†
j ] = 0

[ai, a
†
j ] = δij .
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Furthermore we can define an operator

N =
∑
i

Ni =
∑

a†iai

and

N |n1, n2, . . . , nD〉 = (
∑
i

Ni)|n1〉 ⊗ |n2〉 ⊗ ...⊗ |nD〉

= N1|n1〉 ⊗ |n2〉 ⊗ · · · ⊗ |nD〉

+|n1〉 ⊗N2|n2〉 ⊗ · · · ⊗ |nD〉

+...+ |n1〉 ⊗ |n2〉 ⊗ · · · ⊗ND|nD〉

= (n1 + n2 + ...+ nD)|n1〉 ⊗ |n2〉 ⊗ · · · ⊗ |nD〉

= (n1 + n2 + ...+ nD)|n1, n2, . . . , nD〉

= n|n1, n2, . . . , nD〉

where n = n1 + n2 + · · ·+ nD.
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Similarly

H =
∑

Hi = h̄ω
D∑
i

(Ni +
1

2
)

and

H|n1, n2, ..., nD〉 = h̄ω

D∑
i

(Ni +
1

2
)|n1, n2, ..., nD〉

= h̄ω(n1 +
1

2
+ n2 +

1

2
+ · · ·+ nD +

1

2
)|n1, n2, ..., nD〉

= h̄ω(n+
D

2
)|n1, n2, . . . , nD〉

Thus the energy levels of the oscillator are

En = h̄ω(n+
D

2
)

where n = 0, 1, . . . ,∞.
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Furthermore, the ground state which is denoted by

|0, 0, . . . , 0〉 = |0〉 ⊗ |0〉 ⊗ · · · ⊗ |0〉

satisfies

ai|0, 0, . . . , 0〉 = 0

for all i, and has an energy

E0 =
D

2
h̄ω

This corresponds to an uncertainty of energy h̄ω/2 for every direction.

Furthermore, any higher state can be written as

|n1, n2, . . . , np〉 = (n1!n2! · · ·nD!)−1/2(a†1)n1(a†2)n2 · · · (a†D)nD |0, 0, . . . , 0〉

It is clear now that in higher dimensions there is degeneracy of states.
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(a) The state with energy E1 = (1 +D/2)h̄ω is D-fold degenerate.

This is easily seen by noting that a state of the form |1, 0, 0, . . . , 0〉
has energy E1. But so does |0, 1, 0, . . . , 0〉, |0, 0, 1, . . . , 0〉, and so on.

And there are D such states.

(b) A state with energy E2 = (2 +D/2)h̄ω has (1/2)(D + 1)D fold

degeneracy. This can be seen by noting that a state of the form

|1, 1, 0, . . . , 0〉 has energy E2. There are (1/2)D(D − 1) such states.

But also a state of the form |2, 0, 0, . . . , 0〉 has energy E2. There are

D such states. Thus the total number of states with energy E2 is
1
2D(D − 1) +D = 1

2D(D + 1).

(c) In general, we can show that in D dimensions, a state with energy

En = (n+ D
2 )h̄ω has a Cn+D−1

n fold degeneracy.
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5 Rotations and Angular Momentum

5.1 Rotations in Two Dimensions

In classical mechanics, if we rotate a position vector (~r) by an angle φ

about the z−axis, then the coordinates of the particle change as

x → x′ = x cosφ− y sinφ

y → y′ = x sinφ+ y cosφ

Figure 3: Rotation in the two dimensional (x,y) plane with θ → φ.
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Similarly

px → p′x = px cosφ− py sinφ

py → p′y = px sinφ+ py cosφ

We can also write it in the matrix form as x

y

→
 x′

y′

 =

 cosφ − sinφ

sinφ cosφ

 x

y


and  px

py

→
 p′x

p′y

 =

 cosφ − sinφ

sinφ cosφ

 px

py

 .
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Let us denote by R(φ) the matrix that rotates these vectors and UR(φ)

the operator which acts on the Hilbert space of states corresponding to

the rotation R(φ). Then in the active picture

|ψ〉 → |ψR〉 = UR|ψ〉 .

To find out the effect of rotation on an arbitraty state, let us examine

the effect of rotation on the coordinate basis

UR(φ)|x, y〉 = |x cosφ− y sinφ, x sinφ+ y cosφ〉

From this again we can show that rotation operator is unitary

U†R(φ)UR(φ) = I.

Let us write the generator for infinitesimal rotation about the z−axis as

UR(ε) = I − iε

h̄
G .
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The generators of infinitesimal rotation are are Hermitian because the

rotation operators are unitary

U†R(φ)UR(φ) = I =⇒ U†R(φ) = U−1
R (φ) and G† = G .

Under infinitesimal rotations with small angle approximation, we have

cos ε ' 1 and sin ε ' ε

UR(ε)|x, y〉 = |x− εy, εx+ y〉 and U−1
R (ε)|x, y〉 = |x+ εy,−εx+ y〉

such that |ψR〉 = UR(ε)|ψ〉 and

ψR(x, y) ≡ 〈x, y|ψR〉

= 〈x, y|UR(ε)|ψ〉

= 〈x+ εy,−εx+ y|ψ〉

= ψ(x+ εy,−εx+ y) .
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We have applied

〈x, y|UR = [U†R|x, y〉]
† = [U−1

R |x, y〉]
†

= [|x+ εy,−εx+ y〉]†

= 〈x+ εy,−εx+ y| .

Thus

ψR(x, y) = 〈x, y|UR(ε)|ψ〉 = 〈x+ εy,−εx+ y|ψ〉 ≡ ψ(x+ εy,−εx+ y)

or

ψR(x, y) = 〈x, y|I − iε

h̄
G|ψ〉 = ψ(x, y) + εy

∂

∂x
ψ(x, y)− εx ∂

∂y
ψ(x, y)

Therefore

G = XPy − Y Px = Lz

Therefore the angular momentum operator is the generator of

inifinitesimal rotations.
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Furthermore, the theory is invariant if

U†(R)HU(R) = H

Putting in the infinitesimal structure of UR(ε), we have

iε

h̄
[Lz, H] = 0 with UR(ε) = I − i

h̄
εLz

or

[Lz, H] = 0

We can construct a finite rotation about the z−axis by taking

successive infinitesimal rotations such that ε = φ/N,N →∞. Thus we

have

UR(φ)) = lim
N→∞

(1− iε

h̄
Lz)

N

= lim
N→∞

(1− iφ

Nh̄
Lz)

N

= e−
iφ
h̄ Lz
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Since [Lz, Lz] = 0, it is clear that

UR(φ1))UR(φ2) = UR(φ1 + φ2) .

That is, rotations about the same axis are additive.

The two dimensional vectors (x, y) can equivalently be descrived by the

circular coordinates (r, φ).

• A rotation does not change the radial vector.

• It changes the angle(s).

• Thus in this basis

UR(∆φ))|r, φ〉 = |r, φ+ ∆φ〉

Furthermore, note that since 0 ≤ φ ≤ 2π, the parameter of rotation is

also bounded 0 ≤ φ ≤ 2π.
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In this basis with polar coordinates (r, φ),

|ψR〉 = UR|ψ〉

=

∫
rdrdφUR(∆φ)|r, φ〉ψ(r, φ)

=

∫
rdrdφ|r, φ+ φ〉ψ(r, φ)

=

∫
rdrdφ|r, φ〉ψ(r, φ−∆φ)

Thus

〈r, φ|ψR〉 = ψ(r, φ−∆φ)

or

ψR(r, φ) = ψ(r, φ−∆φ)

Furthermore,

ψR(r, φ) = 〈r, φ|U(R)|ψ〉 = ψ(r, φ−∆φ)
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For an infinitesimal rotation ∆φ = ε→ 0+,

ψR(r, φ) = 〈r, φ|I − iε

h̄
Lz|ψ〉

=

(
1− iε

h̄
Lz

)
ψ(r, φ)

= ψ(r, φ− ε) = ψ(r, φ)− ε ∂
∂φ
ψ(r, φ) .

Thus in the (r, φ) basis

Lz → −ih̄
∂

∂φ

Furthermore, we can show that rotations form a group. This is a Lie

group with transformation operators

UR(θ) = e−( ih̄ )θiLi i = 1, 2, 3

where Li are generators and θi are group parameters.
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5.2 Rotations and Angular Momentum

Let us generalize the results of two dimensions to three dimensions.

There are three generators of infinitesimal rotations in the

3-dimensional space. Let us denote them by

Lx = Y Pz − ZPy
Ly = ZPx −XPz
Lz = XPy − Y Px.

Let us find various commutators

[Lx, X] = [Y Pz − ZPy, X] = 0

[Ly, X] = [ZPx −XPz, X] = Z[Px, X] = −ih̄Z

[Lz, X] = [XPy − Y Px, X] = −Y [Px, X] = ih̄Y.
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To use a more compact notation, let us define

x = x1, y = x2, z = x3, and

px = p1, py = p2, pz = p3.

X = X1, Y = X2, Z = X3, and

Px = P1, Py = P2, Pz = P3.

Thus we can define the angular momentum operator as

Li = εijkXjPk, i, j, k = 1, 2, 3 and

ε123 = 1, ε213 = −1, εiik = 0.

where εijk is the anti-symmetric Levi-Civita symbol.

Clearly, then

[Li, Xj ] = [εik`XkP`, Xj ]

= εik`Xk(−ih̄δ`j)
= (−ih̄)εikjXk
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= ih̄εijkXk

Similary we can show that

[Li, Pj ] = [εik`XkP`, Pj ]

= εik`(ih̄δkj)P`

= (ih̄)εij`P`

= (ih̄)εijkPk

Furthermore, the commutation relation of two angular momentum

operators is now

[Li, Lj ] = [εik`XkP`, εjmnXmPn]

= εik`εjmn[XkP`, XmPn]

= εik`εjmn(Xm[Xk, Pn]P` +Xk[P`, Xm]Pn)

= εik`εjmn(Xm(ih̄δknP` +Xk(−ih̄δ`m)Pn)

= ih̄εik`εjmkXmP` − ih̄εik`εj`nXkPn)
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= −ih̄(δijδ`m − δimδ`j)XmP` + ih̄(δijδkn − δinδkj)XkPn)

= ih̄(−δijX`P` +XiPj + δijXkPk −XjPi)

= ih̄(XiPj −XjPi)

= ih̄εijkLk

N.B. (i) εijkε`mk = δi`δjm − δimδj`. (ii) εijk is anti-symmetric. (iii)

Repeated indices are summed.

Thus

[Li, Lj ] = ih̄εijkLk

This shows that generators of angular momentum along different

directions do not commute. However

[Li, Li] = 0, ; for any i.
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Defining another operator

L2 =
∑
i

LiLi

we have

[Li, L
2] = [Li, LjLj ]

= Lj [Li, Lj ] + [Li, Lj ]Lj

= Lj(ih̄εijkLk) + (ih̄εijkLk)Lj

= ih̄εijk(LjLk + LkLj)

= 0

Thus the operator L2 commutes with all generators of infinitesimal

rotation.

Furthermore, a theory is rotationally invariantly if the generators

commute with the Hamiltonian. This implies

[Li, H] = 0
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for rotational symmetry for all i, and

[L2, H] = 0

for symmetric Hamiltonians.

However, since different components of the angular momentum

operator do not commute among themselves, it is clear that H,L2 and

one component of the angular momentum can be simultaneously

diagonalized for a rotationally invariant theory. A simple example of

rotationally invariant theory is

H =
P 2

2µ
+ V (r) =

P 2

2µ
+ V (X2 + Y 2 + Z2)

where the potential only depends on the radial component. Higher

dimensional isotropic Harmonic Oscillator is a simple example.

In such a problem, we can always choose to diagonalize H,L2, and L3

simultaneously. That means they can have common eigenvectors.
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To study the eigenvalue spectrum of these operators, we further define

L+ ≡ L1 + iL2

L− ≡ L1 − iL2

L− = (L+)†

and we have

[L+, L
2] = [L1 + iL2, L

2] = 0

Since L2 commutes with any component Li.

Similary

[L−, L
2] = [L1 − iL2, L

2] = 0

On the other hand,

[L+, L3] = [L1 + iL2, L3]

= −ih̄L2 + i(ih̄)L1
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= −h̄(L1 + iL2)

= −h̄L+

and

[L−, L3] = [L1 − iL2, L3]

= −ih̄L2 − i(ih̄)L1

= h̄(L1 + iL2)

= h̄L−

Furthermore

[L+, L−] = [L1 + iL2, L1 − iL2]

= [L1 − iL2] + [iL2, L1]

= (−i)(ih̄L3) + i(−ih̄L3)

= 2h̄L3

We know that for a rotationally invariant theory the Hamiltonian
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commutes with all components of the angular momentum operator.

Thus

[L+, H] = [L−, H] = 0

Let |λ, µ〉 represent the simultaneous eigenstates of the operators L2

and L3 such that

L3|λ, µ〉 = µ|λ, µ〉 and

L2|λ, µ〉 = Λ|λ, µ〉

Let us now examine the effect of the operator L+ on a given state,

L3L+|λ, µ〉 = ([L3, L+] + L+L3)|λ, µ〉
= (h̄L+ + L+L3)|λ, µ〉
= (µ+ h̄)L+|λ, µ〉

Similarly

L2L+|λ, µ〉 = ([L2, L+] + L+L
2)|λ, µ〉
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= L+L
2|λ, µ〉

= ΛL+|λ, µ〉

Thus we see that the effect of L+ acting on a given state is to raise its

eigenvalue µ by a unit of h̄ while leaving the eigenvalue of L2

unchanged. Thus we must have

L+|λ, µ〉 = dm|λ, µ+ h̄〉

where dm are constants depending on λ and m.

We can also show that

L3L−|λ, µ〉 = ([L3, L−] + L−L3)|λ, µ〉
= (−h̄L− + L−L3)|λ, µ〉
= (µ− h̄)L−|λ, µ〉

Similarly

L2L−|λ, µ〉 = ([L2, L−] + L−L
2)|λ, µ〉
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= L−L
2|λ, µ〉

= ΛL−|λ, µ〉

Here we notice that the operator L− decrease the eigenvalue of L3 by a

unit of h̄ while leaving the eigenvalue os L2 unchanged. Thus we expect

L−|λ, µ〉 = cm|λ, µ− h̄〉

where cm are constants depending on λ and m.

Since the operators L+ and L− raise and lower the eigenvalue of L3,

they are also known as the raising and lowering operators. Furthermore,

it follows that given a state |λ, µ〉 we can construct a sequence of states

|λ, µ+ h̄〉, |λ, µ+ 2h̄〉, · · ·, and |λ, µ− h̄〉, |λ, µ− 2h̄〉, · · ·, respectively

by applying the raising and lowering operators. However, physically

this sequence cannot go on without termination. For the operator

L2 = L2
1 + L2

2 + L2
3
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Thus

L2 − L2
3 = L2

1 + L2
2 ≥ 0.

This is a positive semidefinite operator. Thus the eigenvalues must

satisfy

Λ− µ2 ≥ 0

or

Λ ≥ µ2.

This implies that there must exist states with a maximum m such that

L+|λ, µmax〉 = 0

〈λ, µmax|L−L+|λ, µmax〉 = 0

〈λ, µmax|(L2 − L2
3 − h̄L3)|λ, µmax〉 = 0

(λ− µ2
max − h̄mmax)〈λ, µmax|λ, µmax〉 = 0

λ− µmax(mmax + h̄) = 0.
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One can similarly show that there must also exist a state with a

maximum m such that

L−|λ, µmin〉 = 0

〈λ, µmin|L+L−|λ, µmin〉 = 0

〈λ, µmin|(L2 − L2
3 + h̄L3)|λ, µmin〉 = 0

(Λ− µ2
min + h̄mmin)〈λ, µmin|λ, µmin〉 = 0

Λ− µmin(mmin − h̄) = 0.

Comparing the two relations we obtain

µmin = −µmax

N.B. The other solution has µmax = µmin − h̄ that is not meaningful.

Furthermore, let us assume that we can go from the state |λ, µmin〉 to

|λ, µmax〉 by applying the operator L+ k times. Thus

µmax − µmin = h̄k
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2µmax = h̄k

µmax =
h̄

2
k = −µmin.

Then

Λ = µmax(µmax + h̄)

=
h̄

2
k(
h̄

2
k + h̄)

= h̄2[
k

2
(
k

2
+ 1)]

We may define ` = k
2 which takes only multiples of half integral values.

Thus we have

Λ = h̄2`(`+ 1)

and

−h̄` ≤ h̄m ≤ h̄`
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where m takes 2`+ 1 values and ` takes values

` = 0,
1

2
, 1,

3

2
, · · ·

that has positive multiple of half integers.

Let us define m to be a number −` ≥ m ≥ ` and we can determine the

normalized states

L2|`,m〉 = h̄2`(`+ 1)|`,m〉

L3|`,m〉 = −h̄m|`,m〉

L+|`,m〉 = dm|`,m+ 1〉.

Thus

〈`,m|L−L+|`,m〉 = |dm|2

〈`,m|L2 − L2
3 − h̄L3|`,m〉 = |dm|2

h̄2[`(`+ 1)−m(m+ 1)] = |dm|2
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Choosing dm to be real, we have

dm = d∗m = h̄[`(`+ 1)−m(m+ 1)]1/2.

Hence

L+|`,m〉 = h̄[`(`+ 1)−m(m+ 1)]1/2|`,m+ 1〉

|`,m+ 1〉 =
1

h̄[`(`+ 1)−m(m+ 1)]1/2
L+|`,m〉.

Similarly, we can also show that

L−|`,m〉 = h̄[`(`+ 1)−m(m− 1)]1/2|`,m− 1〉

|`,m− 1〉 =
1

h̄[`(`+ 1)−m(m− 1)]1/2
L−|`,m〉.

This, therefore, defines all the eigenstates for a particular value of `.

They define a Hilbert space E` which is a subspace of the total Hilbert

space of the angular momentum operators. That means the operators

L2, L3, L+ and L− take any vector in this space to another vector in
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the space. In other words, they leave the space E` invariant. The

dimensionality of the space is 2`+ 1.

Let us now look at some specific examples

(i) ` = 0, dimensionality of the representation is 2`+ 1 = 1, and m = 0.

(ii) ` = 1/2, dimensionality of the representation is 2`+ 1 = 2, and

m = ± 1
2 . Let the states be

|1
2
,

1

2
〉 and |1

2
,−1

2
〉.

We have

〈`,m′|L3|`,m〉 = h̄m〈`,m′|`,m〉 = h̄mδmm′

This implies

〈1
2
,

1

2
|L3|

1

2
,

1

2
〉 =

h̄

2
= 〈1

2
,−1

2
|L3|

1

2
,−1

2
〉

〈1
2
,

1

2
|L3|

1

2
,−1

2
〉 = 0 = 〈1

2
,−1

2
|L3|

1

2
,

1

2
〉.
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Thus

L3 =
h̄

2

 1 0

0 −1


Similarly

〈`,m′|L2|`,m〉 = h̄2`(`+ 1)〈`,m′|`,m〉

= h̄2`(`+ 1)δmm′

〈`,m′|L+|`,m〉 = dm〈`,m′|`,m+ 1〉

= dmδm′,m+1

= h̄[`(`+ 1)−m(m+ 1)]1/2δm′,m+1

〈`,m′|L−|`,m〉 = cm〈`,m′|`,m− 1〉

= cmδm′,m−1

= h̄[`(`+ 1)−m(m− 1)]1/2δm′,m−1.
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Thus

L2 = h̄2 1

2
(
1

2
+ 1)

 1 0

0 1

 =
3

4
h̄2

 1 0

0 1


L+ = h̄

 0 ( 3
4 + 1

4 )1/2

0 0

 = h̄

 0 1

0 0


L− = h̄

 0 0

( 3
4 + 1

4 )1/2 0

 = h̄

 0 0

1 0


Thus the generators of angular momentum have different

representations in different spaces.

To find out the spatial eigenfunctions, we note that rotational

symmetry is best studied in the spherical coordinates. In spherical

coordinates,

x = r sin θ cosφ
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y = r sin θ sinφ

z = r cos θ

and the angular momentum operators take the following form

L1 = Lx = ih̄(sinφ
∂

∂θ
+ cosφ cot θ

∂

∂φ
)

L2 = Ly = ih̄(− cosφ
∂

∂θ
+ sinφ cot θ

∂

∂φ
)

L3 = Lz = −ih̄ ∂

∂φ

Thus

L± = L1 ± iL2

= ih̄[(sinφ∓ i cosφ)
∂

∂θ
+ (cosφ± i sinφ) cot θ

∂

∂φ
)

= ±h̄e±iφ(
∂

∂θ
± i cot θ

∂

∂φ
)
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We know that

L+|`, `〉 = 0.

In the spherical coordinate basis, this becomes

[
∂

∂θ
+ i cot θ

∂

∂φ
]U`,`(r, θ, φ) = 0

Furthermore, we have

Lz|`, `〉 = h̄`|`, `〉

In the spherical coordinate basis, this becomes

∂

∂φ
U`,`(r, θ, φ) = i`U`,`(r, θ, φ)

Thus

U`,`(r, θ, φ) = F`,`(r, θ)e
i`φ
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Let us separate variables and rewrite

F`,`(r, θ)e
i`φ = R`,`Θ`,`(θ).

Putting this back into the equation we have

(
∂

∂θ
+ i cot θ

∂

∂φ
)U`,`(r, θ, φ) = 0 or[

d

dθ
+ i cot θ(i`)

]
Θ`,`(θ) = 0 or

d

dθ
Θ`,`(θ)− ` cot θΘ`,`(θ) = 0

Thus

Θ`,`(θ) = A(sin θ)`

and

U`,`(r, θ, φ) = R`,`(sin θ)
`ei`φ.

Furthermore, note that rotation only affects the angular parts. The
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radial component, therefore, should not depend on any angular

momentum quantum numbers. In fact, it should be the same for all

wavefunctions of different angular momentum quantum numbers and is

determined by the dynamics of the system. Thus

U`,`(r, θ, φ) = R`,`(sin θ)
`ei`φ.

Any other wave function can be obtained from this by using the

lowering operator. Thus

|`, `− 1〉 =
1

[h̄`(`+ 1)− `(`− 1)]1/2
L−|`, `〉

=
1

h̄(2`)1/2
L−|`, `〉 or

U`,`−1(r, θ, φ) =
1

h̄(2`)1/2
(−1)h̄e−iφ(

∂

∂θ
− i cot θ

∂

∂φ
)U`,`(r, θ, φ)

=
1

(2`)1/2
(−1)e−iφ · 2 ∂

∂θ
U`,`(r, θ, φ)
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where we have used

(
∂

∂θ
+ i cot θ

∂

∂φ
)U`,`(r, θ, φ) = 0 and

+i cot θ
∂

∂φ
U`,`(r, θ, φ) = − ∂

∂θ
U`,`(r, θ, φ).

Thus

U`,`−1(r, θ, φ) =
(−1)

(2`)1/2
· 2e−iφR(r)ei`φ

d

dθ
(sin θ)`

=
(−1)

(2`)1/2
· 2R(r)e−i(`−1)φ · `(sin θ)`−1 cos θ

= (−1)(2`)1/2R(r)e−i(`−1)φ(sin θ)`−1 cos θ

Similary, a general wave function U`,m(r, θ, φ) can be obtained by

applying the lowering operator `−m times with suitable normalization.

The interesting conclusions of this operator method is that the angular

momentum operator L2 has eigenvalues of the form
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1. [i] h̄2`(`+ 1)

2. [ii] ` takes integer as well as half integral values.

This is certainly a triumph of quantum mechanics. For the energy

associated with rotation is denoted by

Eθ =
L2

2I

The separations of energy levels in molecules were observed to be in

proportions

1 : 2 : 3 : 4 : ·

We can convince ourselves that this is true if

L2 = h̄2`(`+ 1), ` = 0, 1, 2, . . .

This says that the angular momentum eigenvalues take integral values

and the extra term arise from the noncommutativity of different
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components of the angular momentum operators. If we solve

Schrödinger equations, we would only obtain integral values for angular

momentum eigenvalue. The operator mehtod, on the other hand,

allows half integral eigenvalues as well.
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