
PHYS 3803: Quantum Mechanics I, Spring 2021

Lecture 17, March 30, 2021 (Tuesday)

• Reading:

Harmonic Oscillator: My Notes and Griffiths 2.3

Angular Momentum: Griffiths 4.1 and 4.3

• Assignments: Problem Set 8 due April 07 (Wednesday).

Submit your homework assignments to Canvas.
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Topics for Today: Harmonic Oscillator [Griffiths 2.3]

4.3 The Harmonic Oscillator in the Coordinate Basis [Griffiths 2.3.2]

Topics for Next Lecture: Angular Momentum

4.4 Oscillator in Higher Dimensions

5.1 Rotations in Three Dimensions
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4.3 The Harmonic Oscillator in the Coordinate Basis

In the x basis, the Hamiltonian for the Harmonic Oscillator is give by

H =
P 2

2m
+

1

2
mω2X2 = − h̄2

2m

d2

dx2
+

1

2
mω2x2.

Since the Hamiltonian has no time dependence, we have stationary

solutions. We know that the wave function for stationary solutions are

Ψ(x, t) = ψE(x)e−iEt/h̄

and the time independent Schrödinger Equation

HψE(x) = EψE(x) becomes(
− h̄2

2m

d2

dx2
+

1

2
mω2x2

)
ψE(x) = EψE(x)

where ψE(x) is the eigenfunction of the Hamiltonian with energy E.
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The energy associated with the oscillator must be positive. It can be

seen by writing

〈H〉 =

∫
ψ∗E(x)

(
− h̄2

2m

d2

dx2
+

1

2
mω2x2

)
ψE(x) dx ≥ 0 ,

since it is the sum of two squares. Thus E ≥ 0 for this system.

The Schrödinger equation can be rewritten as

d2ψE
dx2

+
2m

h̄

(
E − 1

2
mω2x2

)
ψE = 0 .

It is always useful to rewrite it in terms of dimensionless arguments so

that we can write down logarithmic or exponential solutions.

There are three dimensionful parameters in our theory

[h̄] = ML2T−1 , [m] = M , and [ω] = T−1 .
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Thus [mω
h̄

]
=

MT−1

ML2T−1
= L−2.

If we define

ξ ≡
(mω
h̄

)1/2

x

then ξ will be dimensionless.

Applying the the chain rule of derivative, we obtain

d

dx
=
dξ

dx

d

dξ
=
(mω
h̄

)1/2 d

dξ
.

Putting this back in the equation of ψE , we have

mω

h̄

d2ψE(ξ)

dξ2
+

2m

h̄

(
E − 1

2
mω2 · h̄

mω
ξ2

)
ψE(ξ) = 0
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or

d2ψE(ξ)

dξ2
+

(
2E

h̄ω
− ξ2

)
ψE(ξ) = 0 .

In addition, let us define

ε ≡ 2E

h̄ω
.

Clearly, ε is dimensionless. Then the equation becomes

d2ψE(ξ)

dξ2
+ (ε− ξ2)ψE(ξ) = 0 .

Solutions in the limits ξ →∞ and ξ → 0

Before deriving the solution, it is useful to find out the asymptotic

forms for the solutions both in the limits ξ →∞ and ξ → 0. For a

finite ε in the limit ξ →∞, the equation of motion (EOM) becomes

d2ψE(ξ)

dξ2
− ξ2ψE(ξ) = 0.
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The solution of this equation is

lim
ξ→∞

ψE(ξ) = ξme±
1
2 ξ

2

for any finite m. This can be easily checked by noticing that

lim
ξ→∞

d2ψE(ξ)

dξ2
= lim

ξ→∞
e±

1
2 ξ

2

[m(m− 1)ξm−2 ± (2m+ 1)ξm + ξm+2]

= e±
1
2 ξ

2

ξm+2

= ξ2ψE(ξ) .

Although both ξme±
1
2 ξ

2

represent an asymptotic solution, there is only

one physical solution

ψE(ξ) ∼ ξme− 1
2 ξ

2

.

N.B. ψE(x)→ 0 as x→∞.

7



In the limit, ξ → 0, the EOM reduces to

d2ψE(ξ)

dξ2
+ εψE(ξ) = 0 , and lim

ξ→0
ψE(ξ)→ f(ξ)

where f(ξ) is a polynomial of ξ in terms of a power series.

General solutions

Recall that the equation of motion is

d2ψE(ξ)

dξ2
+ (ε− ξ2)ψE(ξ) = 0 with ψE(ξ) = f(ξ)e−

1
2 ξ

2

.

Putting this back into the EOM for the oscillator we have

f ′′(ξ)− 2ξf ′(ξ) + (ξ2 − 1)f(ξ) + (ε− ξ2)f(ξ) = 0

or

f ′′(ξ)− 2ξf ′(ξ) + (ε− 1)f(ξ) = 0 .
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We have found the equation of motion

f ′′(ξ)− 2ξf ′(ξ) + (ε− 1)f(ξ) = 0 .

Let us try a power series solution,

f(ξ) =
∞∑
n=0

cnξ
n ,

df(ξ)

dξ
= f ′(ξ) =

∞∑
n=1

ncnξ
n−1 ,

d2f(ξ)

dξ2
= f ′′(ξ) =

∞∑
n=2

n(n− 1)cnξ
n−2 =

∞∑
m=0

(m+ 2)(m+ 1)cm+2ξ
m .

Putting these back into the EOM, we have

∞∑
m=0

(m+ 2)(m+ 1)cm+2ξ
m −

∞∑
m=0

2mcmξ
m + (ε− 1)

∞∑
m=0

cmξ
m = 0

or
∞∑
m=0

[(m+ 2)(m+ 1)cm+2 + (ε− 1− 2m)cm] ξm = 0 .
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If this equation were to be true for all m, then we must have

(m+ 2)(m+ 1)cm+2 + (ε− 1− 2m)cm = 0,

that is

cm+2 = − (ε− 1− 2m)

(m+ 2)(m+ 1)
cm.

This defines a recursion relation for the coefficients. It is clear that all

coefficients can be expressed in terms of c0 and c1.

For example,

c2 = − (ε− 1)

2
c0,

c3 = − (ε− 3)

6
c1,

c4 = − (ε− 5)

2 · 6
c2 =

(ε− 5)(ε− 1)

24
c0.
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This system has a symmetry x→ −x.

Thus, we expect the solutions to be of two types, odd and even.

• If c0 = 0, then all even powers in the expansion of f(ξ) would

vanish and hence it would be antisymmetric.

• On the other hand, if c1 = 0, then f(ξ) would contain only even

powers in the expansion and, therefore, would be symmetric.

• In general, unless the series terminates at some point, its dominant

asymptotic form can be inferred from the ratio

lim
n→∞

cn+2

cn
→ 2

n
.

This is an unphysical solution if n→∞.

• Thus for a physical solution to exist the series must terminate, such

that the numerator of the recursion relation vanishes,

cn+2 = − (ε− 1− 2n)

(n+ 2)(n+ 1)
cn .
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Thus if for some n,

ε− 1− 2n = 0

then all higher coefficients would vanish and the series would terminate.

This implies

2En
h̄ω

= εn = 2n+ 1

En =

(
n+

1

2

)
h̄ω .

Therefore, only if the oscillator has the above energy values would

physical solutions be allowed.

When a solution is allowed for each value of n, the solution becomes

ψn(ξ) = fn(ξ)e−
1
2 ξ

2

where fn(ξ) =
n∑

m=0

cmξ
m

with the coefficients satisfying the above recursion formula.
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The Hermite equation

The function fn(ξ) satisfies the following differential equation

f ′′n (ξ)− 2ξf ′n(ξ) + 2nfn(ξ) = 0 with εn = 2n+ 1 .

• This is called the Hermite equation and the solution fn(ξ) are the

nth Hermite polynomial represented as Hn(ξ).

• Every Hermite polynomial is completely determined in terms of one

arbitrary constant: c0 or c1 depending on whether n is even or odd.

The first few of the Hermite polynomials are

H0(ξ) = 1

H1(ξ) = 2ξ

H2(ξ) = 4ξ2 − 2

H3(ξ) = 8ξ3 − 12ξ

and so on.
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The Hermite polynomials have the following orthogonality relations∫ ∞
−∞

Hm(ξ)Hn(ξ)e−ξ
2

dξ =

{
0 , for n 6= m, and
√
π2n · n! , for n = m.

The harmonic oscillator wave function is written as

ψn(ξ) = Anfn(ξ)e−
1
2 ξ

2

= AnHn(ξ)e−
1
2 ξ

2

.

Thus the constant An can be determined from normalization.

Putting back

ξ =
(mω
h̄

)1/2

x

we obtain

ψn(x) = AnHn

[(mω
h̄

)1/2

x

]
e−

1
2

mω
h̄ x2

.
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Furthermore, we want ∫ ∞
−∞
|ψn(x)|2 dx = 1.

In terms of the ξ variables, this equation becomes∫ ∞
−∞

1

(mωh̄ )1/2
|ψn(ξ)|2 dξ = |An|2

(
h̄

mω

)1/2 ∫ ∞
−∞

Hn(ξ)2e−ξ
2

dξ

= |An|2
(

h̄

mω

)1/2√
π2n · n!

= 1 .

Choosing An to be real, we have

An = A∗n =

[(mω
πh̄

)1/2 1

2n · n!

]1/2

.
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Thus the normalized eigenfunctions for the oscillator are

ψn(x) = AnHn

[(mω
h̄

)1/2

x

]
e−

1
2

mω
h̄ x2

=
(mω
πh̄

)1/4 1

(2n · n!)1/2
Hn

(√
mω

h̄
x

)
e−

1
2

mω
h̄ x2

.

And the wave function becomes

Ψn(x, t) =
(mω
πh̄

)1/4 1

(2n · n!)1/2
Hn

(√
mω

h̄
x

)
e−

1
2

mω
h̄ x2

e−iEnt/h̄

with

En =

(
n+

1

2

)
h̄ω .

That is the same energy derived from the matrix operator formalism.

16



There are two most frequently used pictures in quantum mechanics.

A. The Schrödinger picture

(a) In the Schrödinger picture, the state vector |ψ(t)〉 is time

dependent and operators are chosen to be time independent.

(b) The equation of motion for the state vector is

ih̄
d

dt
|Ψ(t)〉 = H|Ψ(t)〉 .

B. The Heisenberg picture

(a) In the Heisenberg picture, the operators (Ω) are time dependent

and the state vector |Ψ〉 = |Ψ(0)〉 is chosen to be time independent.

(b) The equation of motion for the operators are

ih̄
d

dt
Ω(t) = [Ω, H] or

d

dt
Ω(t) = − i

h̄
[Ω, H] .

In both pictures H is the Hamiltonian operator.
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In the energy basis of the Harmonic Oscillator, the state vectors are

time independent. Hence it is the Heisenberg picture of motion where

the operators have time dependence. For example,

ih̄
da

dt
= [a,H] or

da

dt
= − i

h̄
[a,H] = − i

h̄
h̄ωa = −iωa .

Thus

a(t) = a(0)e−iωt .

Furthermore,

ih̄
da†

dt
= [a†, H] or

da†

dt
= − i

h̄
[a†, H] = − i

h̄
(−h̄ωa†) = iωa† .

Thus

a†(t) = a†(0)eiωt .

18



We often express the annihilation and creation operators in terms of X

and P operators and vice versa

a =

√
mω

2h̄

(
X +

i

mω
P

)
and a† =

√
mω

2h̄

(
X − i

mω
P

)
;

X =

√
h̄

2mω
(a+ a†) and P = −i

√
h̄mω

2
(a− a†) .

Thus

X(t) =

√
h̄

2mω

(
a(0)e−iωt + a†(0)eiωt

)
=

√
h̄

2mω

[(
a(0) + a†(0)

)
cos(ωt)− i

(
a(0)− a†(0)

)
sin(ωt)

]
= X0 cos(ωt) +

1

mω
P0 sin(ωt)

and

P (t) = P0 cos(ωt)− (mω)X0 sin(ωt) .
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In general therefore, in any picture we can write

〈X〉t = 〈X〉0 cos(ωt) +
1

mω
〈P 〉0 sin(ωt)

and

〈P 〉t = 〈P 〉0 cos(ωt)− (mω)〈X〉0 sin(ωt) .

The energy of a quantum oscillator for the n-th eigenstate is

En = (n+
1

2
)h̄ω .

• The minimum of the energy is not zero.

• This arises basically because of the inability to simultaneously

specify both the position as well as the momentum.
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Figure 1: Normalized eigenfunctions versus y = ξ = (mω/h̄)1/2x.

If we plot the probability density for the oscillator in the ground state

its maximum probability is around the point of equilibrium (x = 0) and

tails off at large distances. This is the opposite of classical prediction.
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However, if we plot the probability for large values of the quantum

number (n) the behavior is as follows:

Figure 2: Probability density for n = 11 versus y = ξ = (mω/h̄)1/2x.

Thus as n→∞ the average of these plots behave like the classical

oscillator. This is what the correspondence principle says, namely,

when the energy becomes large the system must behave like a

macroscopic system.
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