
PHYS 3803: Quantum Mechanics I, Spring 2021

Lecture 16, March 25, 2021 (Thursday)

• Reading: Harmonic Oscillator, My Notes and Griffiths 2.3

• Assignments:

Problem Set 7 due March 26 (Friday).

Problem Set 8 due April 07 (Wednesday).

Submit your homework assignments to Canvas.
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Topics for Today: Harmonic Oscillator [Griffiths 2.3]

4.2 Energy Eigenstates of the Harmonic Oscillator [Griffiths 2.3.1]

Topics for Next Lecture: Harmonic Oscillator

4.3 The Harmonic Oscillator in the Coordinate Basis [Griffiths 2.3.2]
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4.2 Energy Eigenstates of the Harmonic Oscillator

The energy eigenvalue equation for the harmonic oscillator is

H|En〉 =

(
P 2

2m
+

1

2
mω2X2

)
|En〉 = En|En〉 .

Apart from scaling factors, the Hamiltonian has the following form

H ∼ X2 + P 2 = (X + iP )(X − iP ) N.B. A2 −B2 = (A+B)(A−B) .

Let us define two new operators

a =

√
mω

2h̄

(
X +

i

mω
P

)
and a† =

√
mω

2h̄

(
X − i

mω
P

)
.

The operator a†a is related to the Hamiltonian

a†a =
1

h̄ω
(
P 2

2m
+

1

2
mω2X2) +

i

2h̄
[X,P ]

=
1

h̄ω
H − 1

2
with [X,P ] = ih̄ .
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The Hamiltonian becomes

H = h̄ω

(
a†a+

1

2

)
.

The operators a and a† has the following commutation relation

[a, a†] =
(mω

2h̄

)(
− i

mω
[X,P ] +

i

mω
[P,X]

)
=

(mω
2h̄

)( 2h̄

mω

)
= 1 .

That is

[a, a†] = 1 ,

where a is the annihilation operator and a† is the creation operator.
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Let us define the operator a†a as the number operator

N ≡ a†a

and the Hamiltonian can be expressed as

H = h̄ω(N +
1

2
).

Applying the commutation relations

[a, a†] = 1 ,

and

[a, a] = 0 , and [a†, a†] = 0 ,

we obtain

• [N, a] = ? and [N, a†] = ?

• [H, a] = ? and [H, a†] = ?

• [H,N ] = ?
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Applying the commutation relations among a and a†, we obtain[
N, a†

]
=

[
a†a, a†

]
= a† ,

[N, a] =
[
a†a, a

]
= −a ,[

H, a†
]

= (h̄ω)

[
(N +

1

2
), a†

]
= (h̄ω)a† ,

[H, a] = (h̄ω)

[
(N +

1

2
), a

]
= −(h̄ω)a ,

and

[H,N ] = 0.

This implies that H and N can be simultaneous diagonalized or that

they have a common set of eigenvectors.
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Let us denote the eigenvector by |n〉 such that

N |n〉 = n|n〉

where n is the eigenvalue and the eigenvectors |n〉 form a complete set

of orthonormal basis vectors

〈m|n〉 = δmn and
∑
n

|n〉〈n| = I .

Then we have

H|n〉 = h̄ω(N +
1

2
)|n〉

= h̄ω(n+
1

2
)|n〉

= En|n〉

The energy associate with the state |n〉 us

En = (n+
1

2
)h̄ω.
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Now let us consider |n′〉 = a|n〉, and

H(a|n〉) = aH|n〉+ [H, a]|n〉

= En(a|n〉)− h̄ω(a|n〉)

= (En − h̄ω)(a|n〉)

= En−1(a|n〉)

H|n′〉 = En−1|n′〉 ,

where we have applied

[H, a] ≡ Ha− aH and Ha = aH + [H, a] = aH − (h̄ω)a .

The state a|n〉 is an eigenstate of the Hamiltonian with the eigenvalue

En − h̄ω = En−1

The effect of the operator a on a state is to lower its energy by one unit

of h̄ω. Therefore, the operator a is called the lowering operator.
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The state with energy

En − h̄ω = [(n− 1) +
1

2
]h̄ω = En−1

must correspond to to |n− 1〉. We can write

a|n〉 = cn|n− 1〉
〈n|a† = c∗n〈n− 1|

Multiplying by the adjoint, we have

〈n|a†a|n〉 = c∗ncn〈n− 1|n− 1〉 = |cn|2:

|cn|2 = c∗ncn

= c∗ncn〈n− 1|n− 1〉
= 〈n|a†a|n〉
= 〈n|N |n〉
= n〈n|n〉
= n,
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that is |cn|2 = n. We may choose cn to be real and obtain

cn = c∗n =
√
n , a|n〉 =

√
n|n− 1〉 , and |n− 1〉 =

1√
n
a|n〉 .

Similarly, we have |n′′〉 = a†|n〉, and

H(a†|n〉) = a†H|n〉 − [a†, H]|n〉
= Ena

†|n〉 − (−h̄ωa†)|n〉
= (En + h̄ω)a†|n〉
= En+1(a†|n〉)

H|n′′〉 = En+1|n′′〉 ,

where we have applied

[H, a†] ≡ Ha† − a†H and Ha† = a†H + [H, a†] = a†H + (h̄ω)a† .

The operator (a†) acting on a state raises its energy by one unit of h̄ω.

Therefore, a† is known as the raising operator.
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We must have

a†|n〉 = dn|n+ 1〉

〈n|a = d∗n〈n+ 1|

and 〈n|aa†|n〉 = d∗ndn〈n+ 1|n+ 1〉 = |dn|2:

|dn|2 = d∗ndn

= d∗ndn〈n+ 1|n+ 1〉

= 〈n|aa†|n〉

= 〈n|N + 1|n〉

= (n+ 1)〈n|n〉

= n+ 1,

that is |dn|2 = n+ 1.
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Choosing dn to be real, we obtain

dn = d∗n =
√
n+ 1

a†|n〉 =
√
n+ 1|n+ 1〉

|n+ 1〉 =
1√
n+ 1

a†|n〉

Let us consider the expectation value of the number operator N

〈n|N |n〉 = n〈n|n〉 = n

〈n|a†a|n〉 = 〈an|an〉 ≥ 0

Thus all eigenvalues of N are n ≥ 0.

Let’s denote the smallest eigenvalue of N as n0. Then

a|n0〉 = cn0 |n0 − 1〉.
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Since n0 is the smallest eigenvalue, we must have

cn0 = 0

a|n0〉 = 0

and

n0|n0〉 = N |n0〉 = a†a|n0〉 = 0

That is n0 = 0.

We can express the ground state as |0〉 and obtain

E0|0〉 = H|0〉 = (N +
1

2
)h̄ω|0〉 =

h̄ω

2
|0〉

that is E0 = h̄ω/2.
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The energy eigenstates are the eigenstates of the number operator N :

(a) the ground state |0〉 : a|0〉 = 0,

(b) 1st excited state |1〉 = (1/d0)a†|0〉 = a†|0〉,

(c) 2nd excited state |2〉 = (1/d1)a†|1〉 = (1/
√

2!)(a†)2|0〉,

(d) nth excited state |n〉 : (1/dn−1)a†|n− 1〉 = (1/
√
n!)(a†)n|0〉,

where dn =
√
n+ 1.

In the |n〉 basis,

a|n〉 =
√
n|n− 1〉

〈m|a|n〉 =
√
n〈m|n− 1〉 =

√
nδm,n−1

a†|n〉 =
√
n+ 1|n+ 1〉

〈m|a†|n〉 =
√
n+ 1〈m|n+ 1〉 =

√
n+ 1δm,n+1.
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Furthermore,

X =

√
h̄

2mω
(a+ a†)

P = −i
√
h̄mω

2
(a− a†)

Thus the matrix elements of X and P becomes

〈m|X|n〉 =

√
h̄

2mω
〈m|(a+ a†)|n〉

=

√
h̄

2mω
[
√
nδm,n−1 +

√
n+ 1δm,n+1]

〈m|P |n〉 = −i
√
h̄mω

2
〈m|(a− a†)|n〉

= −i
√
h̄mω

2
[
√
nδm,n−1 −

√
n+ 1δm,n+1] .
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Since the application of a† gives us a higher state, we can construct all

higher states from the ground state. For example,

|1〉 =
a†√

1
|0〉 = a†|0〉

|2〉 =
a†√
1 + 1

|1〉 =
(a†)2

√
2
|0〉

|n+ 1〉 =
a†√
n+ 1

|n〉 =
a†√
n+ 1

a†√
n
|n− 1〉 =

(a†)n+1√
(n+ 1)!

|0〉

The fact that any higher state can be written as a product of creation

operators acting on the ground state and the fact that

a|0〉 = 0 = 〈0|a†

greatly simplifies the calculation of matrix elements of operators

between different states.
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Example 1:

〈2|X2|0〉 = 〈2|
(

h̄

2mω

)2/2

(a+ a†)2|0〉

=

(
h̄

2mω

)
〈2|a2 + aa† + a†a+ (a†)2|0〉

=

(
h̄

2mω

)
〈2|aa† + (a†)2|0〉 (a|0〉 = 0)

=

(
h̄

2mω

)
〈2|a+ a†|1〉

=

(
h̄

2mω

)(
〈2|0〉+ 〈2|

√
2|2〉

)
=

√
2h̄

2mω
,

where we have applied a†|n〉 =
√
n+ 1|n+ 1〉, a|n〉 =

√
n|n− 1〉, and

〈n|n′〉 = δn,n′ .
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Relations between the E−basis and the x−basis

Let us define the wave function

ψn(x) = 〈x|n〉

This measures the probability amplitude for finding the oscillator at x

with an energy En. The ground state satisfies

a|0〉 = 0 .

In the x basis, it becomes

〈x|a|0〉 =

∫
dy〈x|a|y〉〈y|0〉 = 0 ,

with

a =

√
mω

2h̄
(X +

i

mω
P ) .
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We know that

〈x|X|y〉 = yδ(x− y) and 〈x|P |y〉 = −ih̄ d

dx
δ(x− y) .

Thus

〈x|a|y〉 =

√
mω

2h̄

[
yδ(x− y) +

h̄

mω

d

dx
δ(x− y)

]
And the equation becomes√

mω

2h̄

∫ [
yδ(x− y) +

h̄

mω

d

dx
δ(x− y)

]
ψ0(y) dy = 0

or √
mω

2h̄
(x+

h̄

mω

d

dx
)ψ0(x) = 0

dψ0(x)

dx
= −mω

h̄
[xψ0(x)] .
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The solution to this equation is

ψ0(x) = A0e
−mω

2h̄ x2

.

This wave functions is normalized such that∫
ψ∗0(x)ψ0(x) = A∗0A0

∫ ∞
−∞

e−(mω
h̄ )x2

dx

= |A0|2
√
πh̄

mω
= 1,

Thus

|A0|2 =

√
mω

πh̄
.
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Choose A0 to be real, we have

A0 = A∗0 = (
mω

πh̄
)1/4

and

ψ0(x) = (
mω

πh̄
)1/4e−

mω
2h̄ x2

.

To construct the higher order wave functions, we note that in the x

basis,

a† →
√
mω

2h̄
(x− h̄

mω

d

dx
)

Furthermore,

|n〉 =
(a†)n

(n!)1/2
|0〉 .
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Thus

〈x|n〉 = ψn(x)

=
1

(n!)1/2
(
mω

2h̄
)n/2(x− h̄

mω

d

dx
)nψ0(x)

= (
mω

πh̄
)1/4(

mω

2h̄
)n/2 1

(n!)1/2
(x− h̄

mω

d

dx
)ne−

mω
2h̄ x2

.

This completes our investigation in the matrix formulation.

We have determined the energy levels and the wave functions.
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Bonus: Time Evolution Operator

The Schrödinger equation is

ih̄
∂

∂t
|Ψ(t)〉 = H|Ψ(t)〉 ,

with the solution for the state vector as

|Ψ(t)〉 = U(t, t0)|Ψ(t0)〉 .

If the Hamiltonian is time independent, the time evolution operator is

U(t, t0) = e−iH(t−t0)/h̄ or U(t) = e−iHt/h̄ for t0 = 0 .

The eigenvectors of the Hamiltonian are stationary states such that

H|Ψn(t)〉 = En|Ψn(t)〉 and

|Ψn(t)〉 = U(t)|Ψn(0)〉 = e−iHt/h̄|Ψn(0)〉 = e−iEnt/h̄|Ψn(0)〉 .
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If the state vector is a linear combination of eigenvectors

|Ψ(t)〉 =
∑
n

cn|Ψn(t)〉 .

Then

|Ψ(t)〉 = U(t)|Ψ(0)〉 = e−iHt/h̄|Ψ(0)〉

= e−iHt/h̄

[∑
n

cn|Ψn(0)〉

]
=

[∑
n

cne
−iEnt/h̄|Ψn(0)〉

]
.

In the x basis, that leads to

〈x|Ψ(t)〉 = 〈x|U(t)|Ψ(0)〉 =

[∑
n

cne
−iEnt/h̄〈x|Ψn(0)〉

]
.

That is

Ψ(x, t) =

[∑
n

cne
−iEnt/h̄Ψn(x, 0)

]
.
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