PHYS 3803: Quantum Mechanics I, Spring 2021

Lecture 16, March 25, 2021 (Thursday)

e Reading: Harmonic Oscillator, My Notes and Griffiths 2.3

e Assignments:
Problem Set 7 due March 26 (Friday).
Problem Set 8 due April 07 (Wednesday).

Submit your homework assignments to Canvas.




Topics for Today: Harmonic Oscillator [Griffiths 2.3]

4.2 Energy Eigenstates of the Harmonic Oscillator |Griffiths 2.3.1]

Topics for Next Lecture: Harmonic Oscillator

4.3 The Harmonic Oscillator in the Coordinate Basis |Griffiths 2.3.2]




4.2 Energy Eigenstates of the Harmonic Oscillator

The energy eigenvalue equation for the harmonic oscillator is

HE—P—21 2X? | |E,\ = E, |E
|n>— 2m—|—2mw ‘n>— n‘ 'n>

Apart from scaling factors, the Hamiltonian has the following form
H~X?+P=(X+iP)(X—iP) NB. A*-B?=(A+B)(A-DB).

Let us define two new operators

mw ( mw (
=/ — [ X+ —P d o' =\/—(X-—P).
¢ 2h( +mw ) e 2h( mw )

The operator a'a is related to the Hamiltonian
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The Hamiltonian becomes
; 1
H=hw!la'a+ 5]

The operators a and a' has the following commutation relation

la,al (%) (—L[X, Pl+ [P, X])
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That is
a, aT] =1,

where a is the annihilation operator and a' is the creation operator.




Let us define the operator a'a as the number operator
N =d'a
and the Hamiltonian can be expressed as

1

Applying the commutation relations

[a,aT] =1,

[a,a] =0, and [af,a']=0,

we obtain

N,a] = ? and [N,a'] = ?
H,a) =7 and [H,a'] = ?
H,N| =7




Applying the commutation relations among a and a', we obtain

[N,aw [aTa,aT]
[N,a] = [CLTCL,C_L] = —a,

H,a]

H, al

(H,N] = 0.

This implies that H and N can be simultaneous diagonalized or that

they have a common set of eigenvectors.




Let us denote the eigenvector by |n) such that
Nln) = n|n)

where n is the eigenvalue and the eigenvectors |n) form a complete set

of orthonormal basis vectors

(m[n) = 6pmn and Y |n)(n| =1.

Then we have

H|n) hw(N + %)|n>

huo(n + —)[n)
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The energy associate with the state |n) us

1
E, = (n-+ §)hw.




Now let us consider |n') = a|n), and

H{a|n)) aH|n) + |H, al|n)
En(aln)) = hw(aln))
(En — hw)(aln))
En—1(aln))
H|n') Ep1n')

where we have applied
|H,a) = Ha—aH and Ha=aH+ [H,a] =aH — (hw)a.
The state a|n) is an eigenstate of the Hamiltonian with the eigenvalue
E, —hw=F,_4

The effect of the operator a on a state is to lower its energy by one unit
of hw. Therefore, the operator a is called the lowering operator.




The state with energy

1
E,—hv=[n-1)+ i]hw =FE, 1

must correspond to to |n — 1). We can write
aln) = cpln—1)
(nla” = ¢ (n—1]

Multiplying by the adjoint, we have

(nlata|n) = ctc,(n — 1ln — 1) = |c,|?:

‘Cn‘Q




that is |c,|* = n. We may choose ¢, to be real and obtain

1
cpn =c. =+/n, aln)=+nln—-1), and |n—1>:7a|n>.
n

Similarly, we have [n”) = a'|n), and
H (a|n)) a'H|n) — [a¥, H]|n)
Ena'|n) — (—hwa')|n)
(B, + hw)a'|n)
Eyi1(af|n))
Hin") Ent1|n”),

where we have applied

H,a'l=Ha' —a'H and Ha' =a'H + [H,a']| = a"H + (hw)a'.

The operator (a') acting on a state raises its energy by one unit of hw.
Therefore, a' is known as the raising operator.




We must have

a'|n) dp|n+ 1)
(nla = dy{n+1|

and (nlaa’|n) = d*d,(n + 1n + 1) = |d,|*:

do* = dyd,
dyd,(n+1n+1)
(n|aa'|n)
(n|N + 1|n)
(n+1)(n|n)
n+1,

that is |d,|* = n + 1.




Choosing d,, to be real, we obtain

vn+1

vn+1n+1)
1

vn+1

Let us consider the expectation value of the number operator N

n+ 1) aT|n>

(n|Nin) = n{n|n) =n

(nlataln) = (anlan) >0

Thus all eigenvalues of N are n > 0.

Let’s denote the smallest eigenvalue of N as ng. Then

alng) = cpylng — 1).




Since ng is the smallest eigenvalue, we must have

Cn 0

0]

alng) 0

no|ne) = N|ng) = a'alng) =0

That is ng = 0.
We can express the ground state as |0) and obtain

Ey[0) = H|0) = (N + )hwl0) = "Jo)

that is Fy = hw/2.



The energy eigenstates are the eigenstates of the number operator N:

1st excited state |1) = (1/dg)a’|0) = a']0),

¢) 2nd excited state [2) = (1/d;)a’|1) = (1/v/2))(a1)?|0),
(d) nth excited state [n) : (1/dp—1)at|n — 1) = (1/v/n!)(at)™|0),
where d,, = v/n + 1.

In the |n) basis,

a vnn —1)

(m|a vn{mlin —1) = /oy n_1
Vn+1n+1)

Vn—+1{mn+1) = vVn+ 18 n41.




Furthermore,

h
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Thus the matrix elements of X and P becomes

(m| X |n) I ml(a + ah)in)

2mw

h
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Since the application of a' gives us a higher state, we can construct all

higher states from the ground state. For example,

n+1) = - - 10)

The fact that any higher state can be written as a product of creation

operators acting on the ground state and the fact that
al0) =0 = (0]a’

greatly simplifies the calculation of matrix elements of operators

between different states.




Example 1:

(21X710)

where we have applied a'|n) = v/n + 1|n + 1), a|ln) = v/n|n — 1), and
(nn’) = 0n n-




Relations between the E—basis and the x—basis

Let us define the wave function

¥n(2) = (z[n)

This measures the probability amplitude for finding the oscillator at x
with an energy F,,. The ground state satisfies

al0) =0.

In the x basis, it becomes

(x]a]0) = / dy(laly) (y10) =0,




We know that

(2| X|y) =yé(z —y) and (x|Ply) =

mw h d

laly) =[5 |19 =)+ Lo = )

And the equation becomes

\/7;::/ [yé(a; —y) + %%5(1’ — y)] Yo(y)dy =0
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The solution to this equation is

This wave functions is normalized such that

[ i@ = 540 N

— OO

A
Ao|?y ] 22 =1,
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Choose Ag to be real, we have

To construct the higher order wave functions, we note that in the x

basis,

Furthermore,
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This completes our investigation in the matrix formulation.

We have determined the energy levels and the wave functions.




Bonus: Time Evolution Operator

The Schrodinger equation is

.0
iho-|U(t) = H|¥ (1),

with the solution for the state vector as
(W(t)) =U(t, to)[¥(to)) -
If the Hamiltonian is time independent, the time evolution operator is
Ult, to) = e HE=)/Mor  Ut) = e HYP for t4=0.
The eigenvectors of the Hamiltonian are stationary states such that

H|WU, (1)) E,|V,(t)) and
W (2)) U(t)|9(0)) = e V7|0, (0)) = e 270, (0)) .




If the state vector is a linear combination of eigenvectors

(1) =) calTa(t)).

n

U6Iw(0) = e 7w (0))

e~/ [Z cn|¥n(0))]| = [Z Cne_iEnt/hmjn(O»

n n

In the x basis, that leads to

([ W(t)) = |U()]¥(0)) = [Z cpe” P (2] W, (0))

n

That is

U(x,t) = [Z cneiE”t/h\Ifn(x,O)] .




