PHYS 3803: Quantum Mechanics I, Spring 2021

Lecture 15, March 23, 2021 (Tuesday)

e Handouts:
(a) Midterm Exam Solutions, and

(b) Harmonic Oscillator
e Reading: Harmonic Oscillator, My Notes and Griffiths 2.3
e Assignment: Problem Set 7 due March 24 (Wednesday).

Submit your homework assignments to Canvas.




Topics for Today: Harmonic Oscillator [Griffiths 2.3]

3.8 Equation of continuity
4.1 Introduction

4.2 Energy Eigenstates of the Harmonic Oscillator [Griffiths 2.3.1]

Topics for Next Lecture: Harmonic Oscillator
4.2 FEnergy Eigenstates of the Harmonic Oscillator |Griffiths 2.3.1]
4.3 The Harmonic Oscillator in the Coordinate Basis |Griffiths 2.3.2]




PROBLEM 2 in Midterm Exam
(b) We can easily make the D operator Hermitian by defining

K =—iD and Kl|k)=klk).

The operator K has the eigenvector |k) and the eigenvalue k.

In the x basis, we have

(e K|k) = k{z]k) and / (e K|y k) dy = k{alk).

Let us apply the matrix element of K

d
Kly) = —i(z|D|y) = —i—8(x —
(2| Kly) = —i(z|D]y) = —i——d(z —y)
and define (x|k) = 1 (x), then we have

/ —@'%5 (r —v)vr(y) dy k()




(c) This is a linear first order differential equation that has the

standard form

d
@W(fv) — ikp(x) =0,

with the characteristic equation
A—1k=0

and the root A\ = k.

Therefore, the general solution is
r(x) = Ae” = Ae'™™

where A is a normalization constant, k is an eigenvalue with ¢ (x)

as the eigenfunction of the operator K.




(d) Here A is an arbitrary constant and we can choose A so that the
vector |k) is normalized:

(klg) / (k[z) (zlq) da
/ i (2)ihg () da

|A‘2/ e—ikazeiqa: dr

|A‘2/ e—i(kz—q)m dor

6(k —q)

Bonus (3 points):
The integral in the previous equation is the Gaussian
representation of the Dirac delta function

/ e~ 1= g — (20)5(k — q)




Choosing A € R, and A > 0, we obtain

1
Al?(2m) =1 d A= —_.
AP@r) =1 an Nor:

(e) Any state vector |1)) can be expanded in the x basis

o) = [ )l do = [ v@)v)d

with the wave function

h(x) = (z[y) .

Expanding the state vector in the k basis

/yk (Kk[) dk—/qﬁ )k dk

we then have the wave function ¢(k

(K[4)




(completeness relation)

A*/da:e_ikxw(x).

This is just the Fourier transform.

Bonus (2 points): In part (d), we have found A = A* = 1//27.
Thus

o(k) A* / e~ Fy(x) dx

\/% / e Fh(x) de .




3.8 Equation of continuity

In electrodynamics the total charge (Q)) of a system is a constant

Q(t) = / pd’r = constant, p(7) = charge density,

which is often described as the conservation of charge.
e Such a relation is known as a global conservation law.

e Global conservation laws allow charges to disappear at some place
and to appear suddenly at some other place in an isolated system.

Divergence Theorem:
For a simple solid region V' with the boundary surface S, if Ais a
vector field with continuous components and first order derivative, then

/E-d§:/v-ﬁdv

where V - A = the divergence of A.




However, in electrodynamics, we also know of a continuity equation

dp > -

where p is the electric charge density and J is the current density at

some point. Integrating this over a volume we have

0

— p(f,t)d?’aj:—/Vodex:—/jodg
ot Jy v s

e This shows that any decrease in the charge in a volume must be

accompanied by an electric flux out of the volume.

e In other words, charge has to be locally conserved.




In quantum mechanics there are globally conserved quantities as well.
For example,

(T()T(t)) = (T(O)[UT (U (1) T(0)) = (T(0)[¥(0)).

If the states are normalized this implies that the probability of finding

a particle anywhere is unity. For example,
(w(0)[w(0)) =1 (W(t)[w(t))

(W(t)|z) (x| W(t)) dz

p(x,t)dr.

/
/ T (2, £)(x, 1) da
/




We also have local conservation laws in quantum mechanics. Let us
consider the Schrodinger equation in the coordinate basis:
'B8WCW) HY(Z,t) 7ﬁv?+vr)w(t)
th—WV(xr,t) = x,t) = |—— x x,t).
ot ’ ’ 2m ’

The conjugate equation reads

0 [ h?

—iho U (3, 8) = HU(3,1) =

2m

———V”+V@ﬂm%%w.

Multiplying the first equation with U*(&,¢) and the second with W (Z, 1)
and subtracting the two, we have

0 0
7 — (—) 7 k / —
t\If(a?,t) + UlE t) (%\If (aj,t)]

U (2, ) VAU (T, ) — U(Z, 1) VU (Z,1)] .




That leads to
0

ot
where V? is the Laplacian
V2 () = V- V()

with the gradient of f(7)

of . Of,

Note that 7 = .

e We know that ¥*(Z, 1)V (Z,t)d>r = p(Z,t)d>z is the probability of

finding a particle between £ and * + dx at t.

e Thus U*(Z,t)¥(Z,t) = p(&,t) is the probability density.




We can define a probability density

and a probability current density

- h
— (U (¥ W(Z,t) — (VU™ (L, t)) ¥
T = o (W 0) (VU 1) — (VU (F,1)) O
So that the equation of continuity becomes

0 (Z,1)+V-J=0.

ap

e This again leads to a local conservation law, namely, locally the

charge in the probability density must be equal to the negative of
the probability flux out of that volume.

e This continuity equation further emphasizes that the solutions to
Schrodinger equation must be such that both W(Z,t) and VV(Z, )

are continuous for proper potentials.




4 The Harmonic Oscillator

4.1 Introduction

The harmonic oscillator is very important in both classical mechanics
and quantum mechanics because it is

(a) a system that can be exactly solved,

(b) a system of great relevance in physics, and

(c) a superb pedagogical tool.

The Hamiltonian for a classical harmonic oscillator in one dimension is

given by

P2 1 P2 1
H=T+V ="—+4 ZkX?* = — + —mw?X?,
2m 2 2m 2

where k = spring constant, and w = angular frequency.




Any system fluctuating by small amounts near a configuration of stable
equilibrium may be described either by an oscillator or by a collection
of decoupled harmonic oscillators.

Let us consider a particle moving in a potential V' (z). If the particle is
placed at one of its minima at xg, it will remain there in a state of
stable static equilibrium. The potential it experiences can be expanded
in a Taylor series:

dVv 1 d*V
Viz)=V(rg+ Azx) = V(xg) + o (x —20) + = —=| (2 —20)*+ ...
o

2 dx?

Lo

where Ax = x — xo,
(i) V(xg) = constant = arbitrary reference potential, and
(ii) —(dV/dx)z=y, = force = 0, at an equilibrium position.

If we shift the origin of coordinates to x(, the potential becomes




For small oscillations, we may consider the leading term as the

harmonic oscillator potential with (d?V/dz?)|,—¢ = mw?.

Let us consider a system with N degrees of freedom and a Hamiltonian

Y




The N x N matrix S is real and symmetric and can be diagonalized by

some orthogonal matrix O

1 1 1
§(x — :UO)TS(x — ajo) — §yTOTSOy — §yTSDy.

Let us express

(yl\

Y2

o

Sp =




In this new basis of y, the Hamiltonian becomes

N

p2 1N 2
H L Vi — kiy;
o P10 2

= P; L
Vo + 2(27% + ikiyi)

N
VO+ZHi

is the sum of N independent harmonic oscillators in one dimension.

The total energy is given by
E=FE,+FEy+---+ En+ V.

The eigenfunction in the coordinate basis can be expressed as

VEWi, - YN) = Ve, (Y1) Ve, (Y2) .- YEy (YN )-




4.1 Energy Eigenstates of the Harmonic Oscillator

The energy eigenvalue equation for the harmonic oscillator is

HE—P—21 2X? | |E,\ = E, |E
|n>— 2m—|—2mw ‘n>— n‘ 'n>

Apart from scaling factors, the Hamiltonian has the following form
H~X?+P=(X+iP)(X—iP) NB. A*-B?=(A+B)(A-DB).

Let us define two new operators

mw ( mw (
=/ — [ X+ —P d o' =\/—(X-—P).
¢ 2h( +mw ) e 2h( mw )

The operator a'a is related to the Hamiltonian

1 P? 1 '
a'a —(—+—mw2X2)+i[X,P]

hw 2m 2 2h
1 1

—H — - ith | X, P| =1h.
~ 5 with | X, P]| =1ih




The Hamiltonian becomes

1
H = hw (aTa+§) .

The operators a and a' has the following commutation relation

la,al] (7;—7;“’) (-L[X, Pl+ [P, X]>

mw mw

(5) ()

L.

[a,a’]=1.




Let us define the operator a'a as the number operator
N =d'a
and the Hamiltonian can be expressed as

1

Applying the commutation relations

[a,aT] =1,

[a,a] =0, and [af,a']=0,

we obtain

N,a] = ? and [N,a'] = ?
H,a) =7 and [H,a'] = ?
H,N| =7




Applying the commutation relations among a and a', we obtain

[N,aw [aTa,aT]
[N,a] = [CLTCL,C_L] = —a,

H,a]

H, al

(H,N] = 0.

This implies that H and N can be simultaneous diagonalized or that

they have a common set of eigenvectors.




Let us denote the eigenvector by |n) such that
Nln) = n|n)

where n is the eigenvalue and the eigenvectors |n) form a complete set

of orthonormal basis vectors

(m[n) = 6pmn and Y |n)(n| =1.

Then we have

H|n) hw(N + %)|n>

huo(n + —)[n)

2

The energy associate with the state |n) us

1
E, = (n-+ §)hw.




Now let us consider |n') = a|n), and

H{a|n)) aH|n) + |H, al|n)
En(aln)) = hw(aln))
(En — hw)(aln))
En—1(aln))
H|n') Ep1n')

where we have applied
|H,a) = Ha—aH and Ha=aH+ [H,a] =aH — (hw)a.
The state a|n) is an eigenstate of the Hamiltonian with the eigenvalue
E, —hw=F,_4

The effect of the operator a on a state is to lower its energy by one unit
of hw. Therefore, the operator a is called the lowering operator.




The state with energy

1
2

must correspond to to |n — 1). We can write

E,—hv=[n—-1)+ =]hw=FE,_1

aln) = cpln—1)

(n\aT = ¢ (n—1]

Multiplying by the adjoint, we have

enl® = chen
c;cn(n —1n —1)
(n|ata|n)
(n|N|n)

n,




that is |c,|* = n. We may choose ¢, to be real and obtain

1
cpn =c. =+/n, aln)=+nln—-1), and |n—1>:7a|n>.
n

Similarly, we have [n”) = a'|n), and
H (a|n)) a'H|n) — [a¥, H]|n)
Ena'|n) — (—hwa')|n)
(B, + hw)a'|n)
Eyi1(af|n))
Hin") Ent1|n”),

where we have applied

H,a'l=Ha' —a'H and Ha' =a'H + [H,a']| = a"H + (hw)a'.

The operator (a') acting on a state raises its energy by one unit of hw.
Therefore, a' is known as the raising operator.




