
PHYS 3803: Quantum Mechanics I, Spring 2021

Lecture 15, March 23, 2021 (Tuesday)

• Handouts:

(a) Midterm Exam Solutions, and

(b) Harmonic Oscillator

• Reading: Harmonic Oscillator, My Notes and Griffiths 2.3

• Assignment: Problem Set 7 due March 24 (Wednesday).

Submit your homework assignments to Canvas.
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Topics for Today: Harmonic Oscillator [Griffiths 2.3]

3.8 Equation of continuity

4.1 Introduction

4.2 Energy Eigenstates of the Harmonic Oscillator [Griffiths 2.3.1]

Topics for Next Lecture: Harmonic Oscillator

4.2 Energy Eigenstates of the Harmonic Oscillator [Griffiths 2.3.1]

4.3 The Harmonic Oscillator in the Coordinate Basis [Griffiths 2.3.2]
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PROBLEM 2 in Midterm Exam

(b) We can easily make the D operator Hermitian by defining

K ≡ −iD and K|k〉 = k|k〉 .

The operator K has the eigenvector |k〉 and the eigenvalue k.

In the x basis, we have

〈x|K|k〉 = k〈x|k〉 and

∫
〈x|K|y〉〈y|k〉 dy = k〈x|k〉 .

Let us apply the matrix element of K

〈x|K|y〉 = −i〈x|D|y〉 = −i d
dx
δ(x− y)

and define 〈x|k〉 = ψk(x), then we have∫
−i d
dx
δ(x− y)ψk(y) dy = kψk(x) or

−i d
dx
ψk(x) = kψk(x) .
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(c) This is a linear first order differential equation that has the

standard form

d

dx
ψk(x)− ikψk(x) = 0 ,

with the characteristic equation

λ− ik = 0

and the root λ = ik.

Therefore, the general solution is

ψk(x) = Aeλx = Aeikx

where A is a normalization constant, k is an eigenvalue with ψk(x)

as the eigenfunction of the operator K.
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(d) Here A is an arbitrary constant and we can choose A so that the

vector |k〉 is normalized:

〈k|q〉 =

∫
〈k|x〉〈x|q〉 dx

=

∫
ψ∗k(x)ψq(x) dx

= |A|2
∫

e−ikxeiqx dx

= |A|2
∫

e−i(k−q)x dx

= δ(k − q)

Bonus (3 points):

The integral in the previous equation is the Gaussian

representation of the Dirac delta function∫
e−i(k−q)x dx = (2π)δ(k − q) .
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Choosing A ∈ R, and A > 0, we obtain

|A|2(2π) = 1 and A =
1√
2π

.

(e) Any state vector |ψ〉 can be expanded in the x basis

|ψ〉 =

∫
|x〉〈x|ψ〉 dx =

∫
ψ(x)|ψ〉 dx

with the wave function

ψ(x) ≡ 〈x|ψ〉 .

Expanding the state vector in the k basis

|ψ〉 =

∫
|k〉〈k|ψ〉 dk =

∫
φ(k)|k〉 dk

we then have the wave function φ(k)

φ(k) ≡ 〈k|ψ〉
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=

∫
dx〈k|x〉〈x|ψ〉 (completeness relation)

=

∫
ψ∗k(x)ψ(x)

= A∗
∫
dxe−ikxψ(x) .

This is just the Fourier transform.

Bonus (2 points): In part (d), we have found A = A∗ = 1/
√

2π.

Thus

φ(k) = A∗
∫

e−ikxψ(x) dx

=
1√
2π

∫
e−ikxψ(x) dx .
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3.8 Equation of continuity

In electrodynamics the total charge (Q) of a system is a constant

Q(t) =

∫
ρ d3x = constant , ρ(~r) = charge density ,

which is often described as the conservation of charge.

• Such a relation is known as a global conservation law.

• Global conservation laws allow charges to disappear at some place

and to appear suddenly at some other place in an isolated system.

Divergence Theorem:

For a simple solid region V with the boundary surface S, if ~A is a

vector field with continuous components and first order derivative, then∫
~A · d~S =

∫
∇ · ~AdV

where ∇ · ~A = the divergence of ~A.
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However, in electrodynamics, we also know of a continuity equation

∂ρ

∂t
= −∇ · ~J or

∂ρ

∂t
+∇ · ~J = 0 ,

where ρ is the electric charge density and ~J is the current density at

some point. Integrating this over a volume we have

∂

∂t

∫
V

ρ(~x, t) d3x = −
∫
V

∇ · ~J d3x = −
∫
S

~J · d~S

• This shows that any decrease in the charge in a volume must be

accompanied by an electric flux out of the volume.

• In other words, charge has to be locally conserved.
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In quantum mechanics there are globally conserved quantities as well.

For example,

〈Ψ(t)|Ψ(t)〉 = 〈Ψ(0)|U†(t)U(t)|Ψ(0)〉 = 〈Ψ(0)|Ψ(0)〉 .

If the states are normalized this implies that the probability of finding

a particle anywhere is unity. For example,

〈Ψ(0)|Ψ(0)〉 = 1 = 〈Ψ(t)|Ψ(t)〉

=

∫
〈Ψ(t)|x〉〈x|Ψ(t)〉 dx

=

∫
Ψ∗(x, t)Ψ(x, t) dx

=

∫
ρ(x, t) dx .
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We also have local conservation laws in quantum mechanics. Let us

consider the Schrödinger equation in the coordinate basis:

ih̄
∂

∂t
Ψ(~x, t) = HΨ(~x, t) =

[
− h̄2

2m
∇2 + V (~x)

]
Ψ(~x, t) .

The conjugate equation reads

−ih̄ ∂
∂t

Ψ∗(~x, t) = HΨ∗(~x, t) =

[
− h̄2

2m
∇2 + V (~x)

]
Ψ∗(~x, t) .

Multiplying the first equation with Ψ∗(~x, t) and the second with Ψ(~x, t)

and subtracting the two, we have

ih̄

[
Ψ∗(~x, t)

∂

∂t
Ψ(~x, t) + Ψ(~x, t)

∂

∂t
Ψ∗(~x, t)

]
= − h̄2

2m

[
Ψ∗(~x, t)∇2Ψ(~x, t)−Ψ(~x, t)∇2Ψ∗(~x, t)

]
.
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That leads to

∂

∂t
[Ψ∗(~x, t)Ψ(~x, t)] = − h̄

2im
∇ · [Ψ∗(~x, t)∇Ψ(~x, t)−∇Ψ∗(~x, t)Ψ(~x, t)]

where ∇2 is the Laplacian

∇2 f(~r) = ∇ · ∇f(~r)

with the gradient of f(~r)

∇f(~r) =
∂f

∂x
x̂+

∂f

∂y
ŷ +

∂f

∂z
ẑ .

Note that ~r = ~x.

• We know that Ψ∗(~x, t)Ψ(~x, t)d3x = ρ(~x, t)d3x is the probability of

finding a particle between ~x and ~x+ d~x at t.

• Thus Ψ∗(~x, t)Ψ(~x, t) = ρ(~x, t) is the probability density.
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We can define a probability density

ρ(~x, t) ≡ Ψ∗(~x, t)Ψ(~x, t)

and a probability current density

~J ≡ +
h̄

2im
[Ψ∗(~x, t) (∇Ψ(~x, t))− (∇Ψ∗(~x, t)) Ψ(~x, t)] .

So that the equation of continuity becomes

∂

∂t
ρ(~x, t) +∇ · ~J = 0 .

• This again leads to a local conservation law, namely, locally the

charge in the probability density must be equal to the negative of

the probability flux out of that volume.

• This continuity equation further emphasizes that the solutions to

Schrödinger equation must be such that both Ψ(~x, t) and ∇Ψ(~x, t)

are continuous for proper potentials.
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4 The Harmonic Oscillator

4.1 Introduction

The harmonic oscillator is very important in both classical mechanics

and quantum mechanics because it is

(a) a system that can be exactly solved,

(b) a system of great relevance in physics, and

(c) a superb pedagogical tool.

The Hamiltonian for a classical harmonic oscillator in one dimension is

given by

H = T + V =
P 2

2m
+

1

2
kX2 =

P 2

2m
+

1

2
mω2X2 ,

where k = spring constant, and ω = angular frequency.
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Any system fluctuating by small amounts near a configuration of stable

equilibrium may be described either by an oscillator or by a collection

of decoupled harmonic oscillators.

Let us consider a particle moving in a potential V (x). If the particle is

placed at one of its minima at x0, it will remain there in a state of

stable static equilibrium. The potential it experiences can be expanded

in a Taylor series:

V (x) = V (x0 + ∆x) = V (x0) +
dV

dx

∣∣∣∣
x0

(x− x0) +
1

2

d2V

dx2

∣∣∣∣
x0

(x− x0)2 + ...

where ∆x = x− x0,

(i) V (x0) = constant = arbitrary reference potential, and

(ii) −(dV/dx)x=x0 = force = 0, at an equilibrium position.

If we shift the origin of coordinates to x0, the potential becomes

V (x) =
1

2!

d2V

dx2

∣∣∣∣
x=0

x2 +
1

3!

d3V

dx3

∣∣∣∣
x=0

x3 + · · ·
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For small oscillations, we may consider the leading term as the

harmonic oscillator potential with (d2V/dx2)|x=0 = mω2.

Let us consider a system with N degrees of freedom and a Hamiltonian

H =

n∑
i

p2i
2m

+ V (x1, . . . , xN ) and

V (x1, . . . , xN ) = V (~x0) +
1

2!

N∑
i,j

∂2V

∂xi∂xj

∣∣∣∣
~x=~x0

(xi − x0i )(xj − x0j ) + · · ·

= V (~x0) +
∑
i,j

1

2!

N∑
i,j

(xi − x0i )Sij(xj − x0j ) +O(∆x3)

' V (~x0) +
1

2
(x− x0)TS(x− x0) ,

near an equilibrium point ~x0 = (x01, . . . , x
0
N ).
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The N ×N matrix S is real and symmetric and can be diagonalized by

some orthogonal matrix O

1

2
(x− x0)TS(x− x0) =

1

2
yTOTSOy =

1

2
yTSDy.

Let us express

(x− x0) = O


y1

y2
...

yN

 , and

OTSO = SD =


k1

. . .

kN

 .
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In this new basis of y, the Hamiltonian becomes

H =
N∑
i

p2i
2m

+ V0 +
1

2

N∑
i

kiy
2
i

= V0 +
N∑
i

(
p2i
2m

+
1

2
kiy

2
i )

= V0 +
N∑
i

Hi

is the sum of N independent harmonic oscillators in one dimension.

The total energy is given by

E = E1 + E2 + · · ·+ EN + V0.

The eigenfunction in the coordinate basis can be expressed as

ψE(y1, . . . , yN ) = ψE1(y1)ψE2(y2)...ψEN
(yN ).
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4.1 Energy Eigenstates of the Harmonic Oscillator

The energy eigenvalue equation for the harmonic oscillator is

H|En〉 =

(
P 2

2m
+

1

2
mω2X2

)
|En〉 = En|En〉 .

Apart from scaling factors, the Hamiltonian has the following form

H ∼ X2 + P 2 = (X + iP )(X − iP ) N.B. A2 −B2 = (A+B)(A−B) .

Let us define two new operators

a =

√
mω

2h̄

(
X +

i

mω
P

)
and a† =

√
mω

2h̄

(
X − i

mω
P

)
.

The operator a†a is related to the Hamiltonian

a†a =
1

h̄ω
(
P 2

2m
+

1

2
mω2X2) +

i

2h̄
[X,P ]

=
1

h̄ω
H − 1

2
with [X,P ] = ih̄ .

19



The Hamiltonian becomes

H = h̄ω

(
a†a+

1

2

)
.

The operators a and a† has the following commutation relation

[a, a†] =
(mω

2h̄

)(
− i

mω
[X,P ] +

i

mω
[P,X]

)
=

(mω
2h̄

)( 2h̄

mω

)
= 1 .

That is

[a, a†] = 1 .
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Let us define the operator a†a as the number operator

N ≡ a†a

and the Hamiltonian can be expressed as

H = h̄ω(N +
1

2
).

Applying the commutation relations

[a, a†] = 1 ,

and

[a, a] = 0 , and [a†, a†] = 0 ,

we obtain

• [N, a] = ? and [N, a†] = ?

• [H, a] = ? and [H, a†] = ?

• [H,N ] = ?
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Applying the commutation relations among a and a†, we obtain[
N, a†

]
=

[
a†a, a†

]
= a† ,

[N, a] =
[
a†a, a

]
= −a ,[

H, a†
]

= (h̄ω)

[
(N +

1

2
), a†

]
= (h̄ω)a† ,

[H, a] = (h̄ω)

[
(N +

1

2
), a

]
= −(h̄ω)a ,

and

[H,N ] = 0.

This implies that H and N can be simultaneous diagonalized or that

they have a common set of eigenvectors.
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Let us denote the eigenvector by |n〉 such that

N |n〉 = n|n〉

where n is the eigenvalue and the eigenvectors |n〉 form a complete set

of orthonormal basis vectors

〈m|n〉 = δmn and
∑
n

|n〉〈n| = I .

Then we have

H|n〉 = h̄ω(N +
1

2
)|n〉

= h̄ω(n+
1

2
)|n〉

= En|n〉

The energy associate with the state |n〉 us

En = (n+
1

2
)h̄ω.
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Now let us consider |n′〉 = a|n〉, and

H(a|n〉) = aH|n〉+ [H, a]|n〉

= En(a|n〉)− h̄ω(a|n〉)

= (En − h̄ω)(a|n〉)

= En−1(a|n〉)

H|n′〉 = En−1|n′〉 ,

where we have applied

[H, a] ≡ Ha− aH and Ha = aH + [H, a] = aH − (h̄ω)a .

The state a|n〉 is an eigenstate of the Hamiltonian with the eigenvalue

En − h̄ω = En−1

The effect of the operator a on a state is to lower its energy by one unit

of h̄ω. Therefore, the operator a is called the lowering operator.
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The state with energy

En − h̄ω = [(n− 1) +
1

2
]h̄ω = En−1

must correspond to to |n− 1〉. We can write

a|n〉 = cn|n− 1〉

〈n|a† = c∗n〈n− 1|

Multiplying by the adjoint, we have

|cn|2 = c∗ncn

= c∗ncn〈n− 1|n− 1〉

= 〈n|a†a|n〉

= 〈n|N |n〉

= n〈n|n〉

= n,
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that is |cn|2 = n. We may choose cn to be real and obtain

cn = c∗n =
√
n , a|n〉 =

√
n|n− 1〉 , and |n− 1〉 =

1√
n
a|n〉 .

Similarly, we have |n′′〉 = a†|n〉, and

H(a†|n〉) = a†H|n〉 − [a†, H]|n〉
= Ena

†|n〉 − (−h̄ωa†)|n〉
= (En + h̄ω)a†|n〉
= En+1(a†|n〉)

H|n′′〉 = En+1|n′′〉 ,

where we have applied

[H, a†] ≡ Ha† − a†H and Ha† = a†H + [H, a†] = a†H + (h̄ω)a† .

The operator (a†) acting on a state raises its energy by one unit of h̄ω.

Therefore, a† is known as the raising operator.

26


